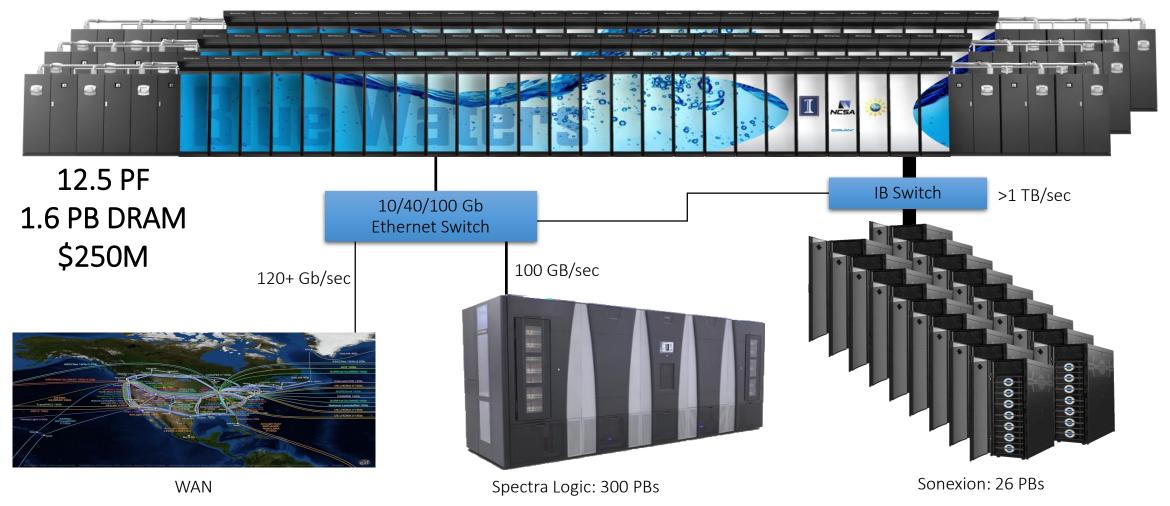
Addressing the Accelerator Programming Challenges in Exascale Systems

Wen-mei Hwu
Professor and Sanders-AMD Chair, ECE, NCSA
University of Illinois at Urbana-Champaign

Blue Waters Computing System

Operational at Illinois since 3/2013

49,504 CPUs -- 4,224 GPUs



Some Production Use Results

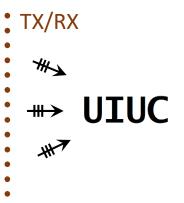
Application Description		Application Speedup
NAMD	100 million atom benchmark with Langevin dynamics and PME once every 4 steps, from launch to finish, all I/O included	1.8
Chroma	Lattice QCD parameters: grid size of 483 x 512 running at the physical values of the quark masses	2.4
QMCPACK	Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC	2.7
ChaNGa	Collisionless N-body stellar dynamics with multipole expansion and hydrodynamics	2.1
AWP	Anelastic wave propagation with staggered-grid finite- difference and realistic plastic yielding (in progress)	1.2

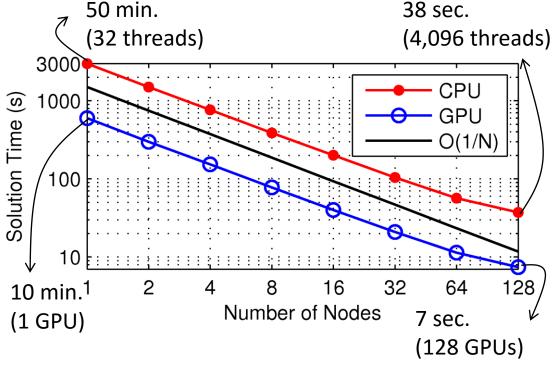
MLFMA

Full-wave inverse scattering solutions on hundreds of nodes with GPU acceleration

 Fast O(N) algorithms are foundational for computing at scale

 Largest inverse-scattering solutions by order-of-magnitude





Some Lessons Learned

- Throughput computing using GPUs can result in 2-3X end-to-end application level performance improvement
 - NSF is investing in a PAID program to help science teams to move their code into heterogeneous computing
- GPU computing has so far had narrow but deep impact in the application space due to limited support:
 - Data movement overhead and small GPU memory
 - Unified memory, HBM, NVLink, and HSA-style systems help
 - Low-level programming interfaces with poor performance portability

Performance-Portability: One Source for All

Challenges

Granularity of Parallelism

Levels of Hierarchy

Memory Characteristics Resource Sizes Microarchitecture

Solutions

Overdecomposition and Coarsening Recurisive Codelet Composition

Automatic Data Placement

Autotuning

Algorithmic Choice

Performance-Portability: One Source for All

Challenges

Granularity of Parallelism

Levels of Hierarchy

Memory Characteristics Resource Sizes Microarchitecture

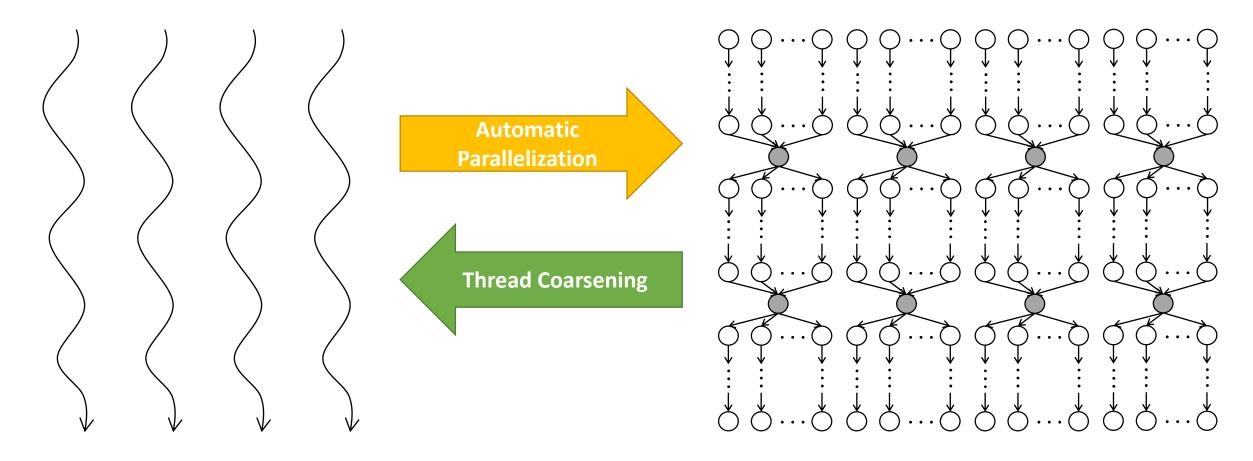
Solutions

Overdecomposition and Coarsening Recursive Codelet Composition

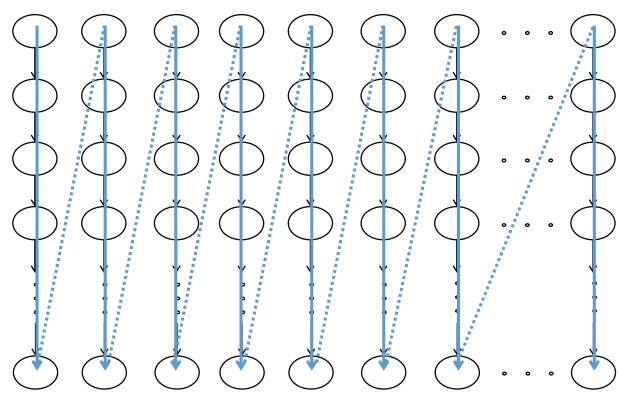
Automatic Data Placement

Autotuning

Algorithmic Choice

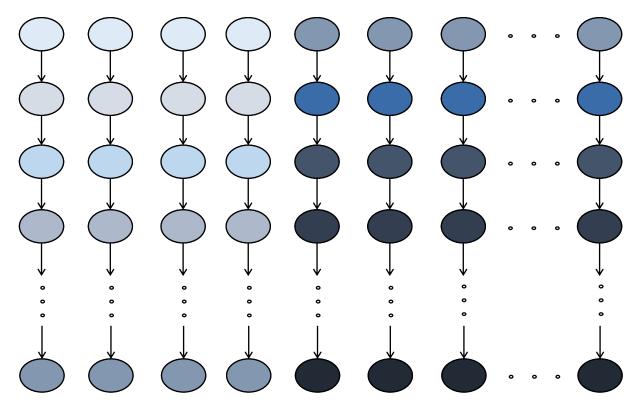


Existing Approaches



Depth First Order (DFO) Scheduling

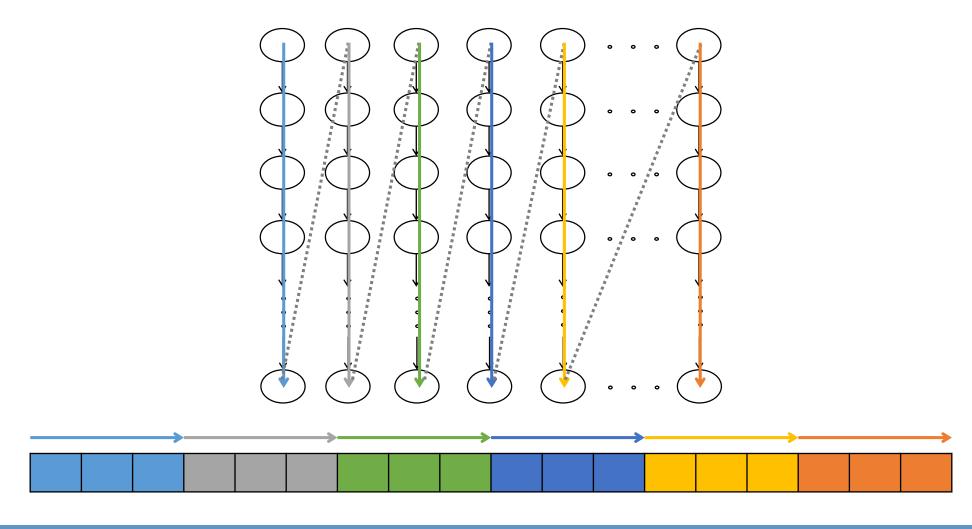
Existing Approaches



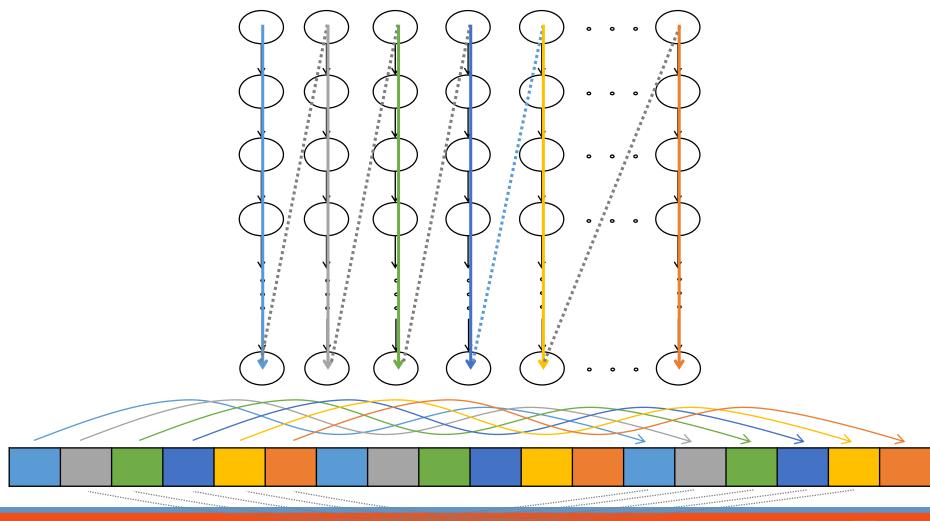
DFO Scheduling with Vectorization

(time progresses as color gets darker)

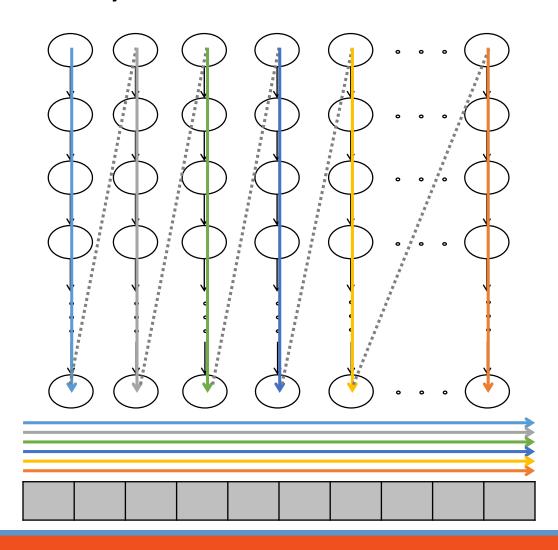
DFO and Locality



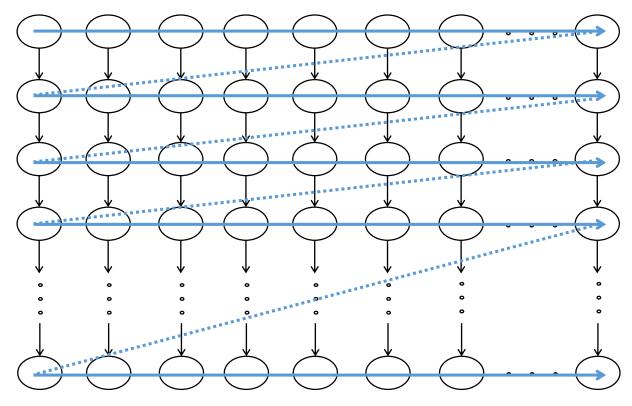
DFO and Locality



DFO and Locality

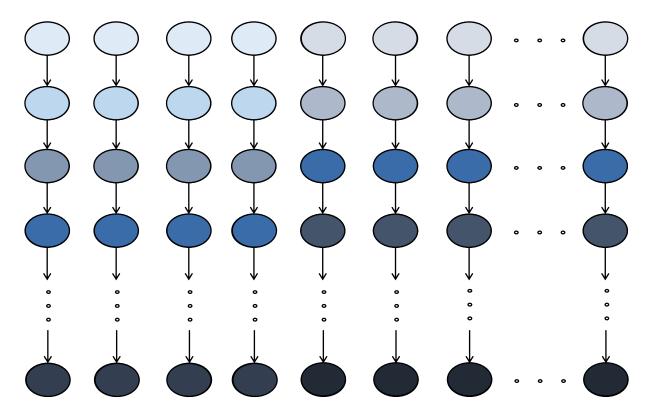


Alternative Schedule: BFO



Breadth First Order (BFO) Scheduling

Alternative Schedule: BFO



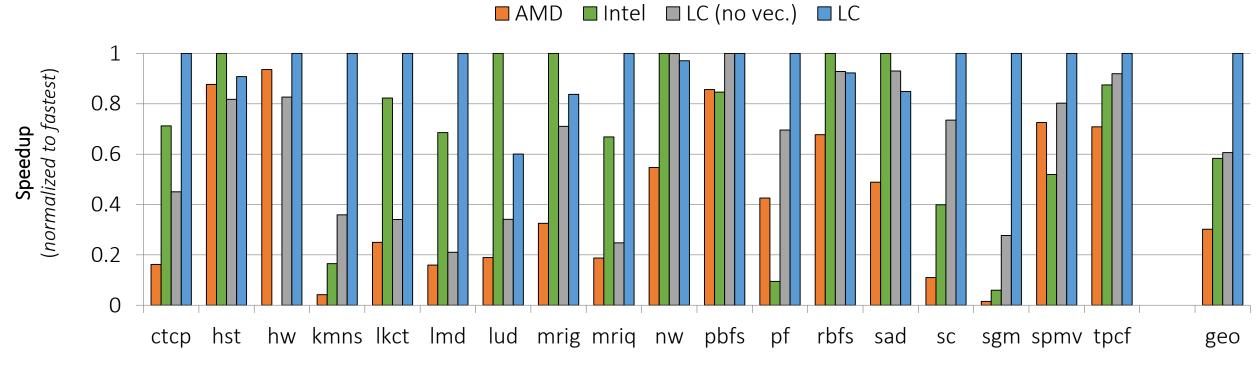
BFO with Vectorization

(time progresses as color gets darker)

OpenCL/CUDA to CPU Compilers

	Basic Coarsening (DFO)	Vectorization	Locality-aware Scheduling (DFO vs. BFO)
AMD	No	No	No
MCUDA	Yes	No	No
SnuCL	Yes	No	No
Karrenberg & Hack	Yes	Yes	No
pocl	Yes	Yes	No
Intel	Yes	Yes	No
MxPA	Yes	Yes	Yes

Performance Results



Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations

Kim, et al CGO'15

Performance-Portability: One Source for All

Challenges

Granularity of Parallelism

Levels of Hierarchy

Memory Characteristics Resource Sizes Microarchitecture

Solutions

Overdecomposition and Coarsening Recursive Codelet Composition

Automatic Data Placement

Autotuning

Algorithmic Choice

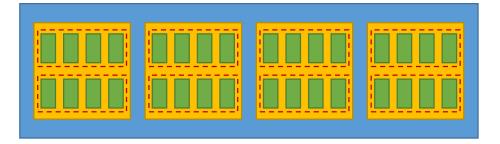
Hierarchical Compute Organization of Devices

CPU

GPU

- 1. Process
- 2. Thread (vector-capable)
- 3. Vector Lane
- 4. Instruction-level Parallelism

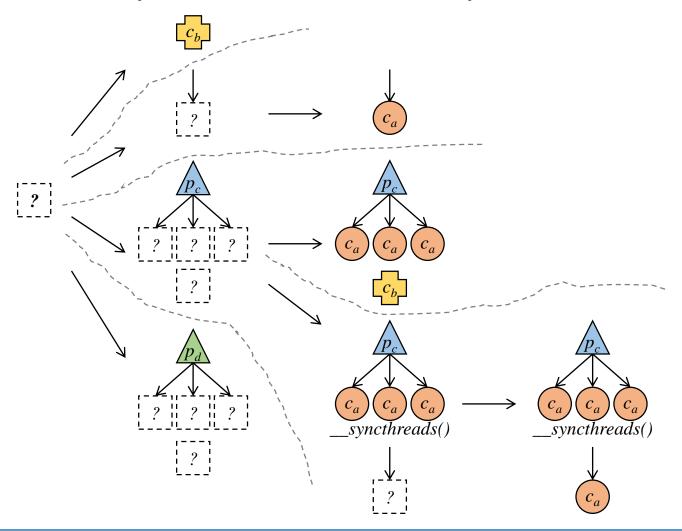
- 1. Grid
- 2. Block
- 3. Warp
- 4. Thread
- 5. Instruction-level Parallelism



Tangram: Codelet-based Programming Model

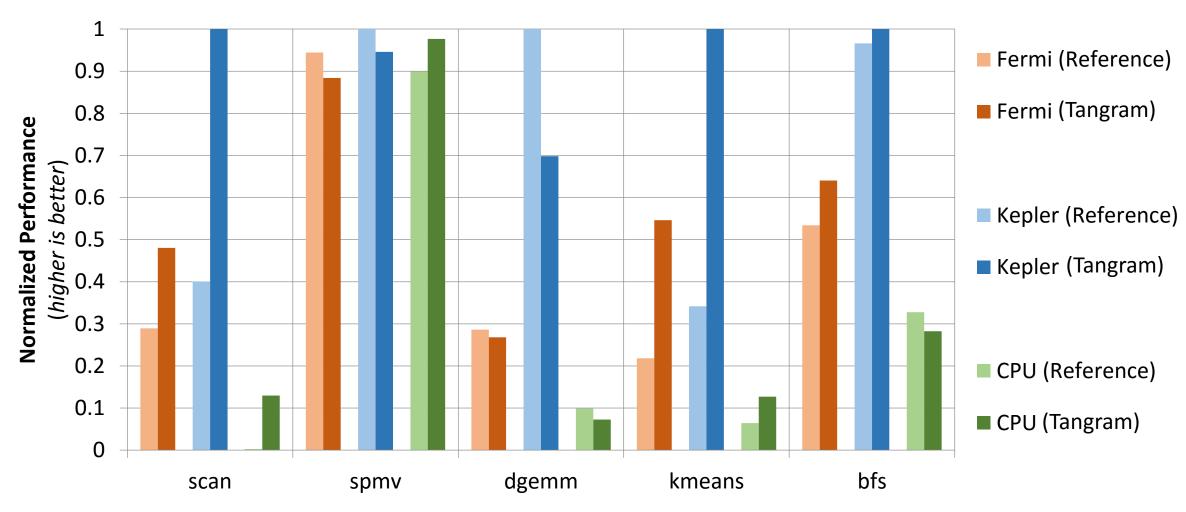
```
codelet tag(asso tiled)
 codelet
int sum(const Array<1,int> in) {
                                             int sum(const Array<1,int> in) {
  unsigned len = in.size();
                                               __tunable unsigned p;
 int accum = 0;
                                               unsigned len = in.size();
 for(unsigned i=0; i < len; ++i) {</pre>
                                               unsigned tile = (len+p-1)/p;
   accum += in[i];
                                               return sum( map( sum, partition(in,
                                                   p, sequence(0, tile, len), sequence(1), sequence(tile, tile, len+1))));
  return accum;
    (a) Atomic autonomous codelet
                                                            (c) Compound codelet using adjacent tiling
codelet coop tag(kog)
int sum(const Array<1,int> in) {
                                              codelet tag(stride tiled)
  __shared int tmp[coopDim()];
                                             int sum(const Array<1,int> in) {
 unsigned len = in.size();
                                               __tunable unsigned p;
 unsigned id = coopIdx();
                                               unsigned len = in.size();
 tmp[id] = (id < len)? in[id] : 0;
                                               unsigned tile = (len+p-1)/p;
 for(unsigned s=1; s<coopDim(); s *= 2) {</pre>
                                               return sum( map( sum, partition(in,
   if(id >= s)
                                                   p, sequence(0,1,p), sequence(p), sequence((p-1)*tile,1,len+1))));
      tmp[id] += tmp[id - s];
  return tmp[coopDim()-1];
     (b) Atomic cooperative codelet
                                                             (d) Compound codelet using strided tiling
```

Tangram: Composition Example



Automatically spans many levels of hierarchical design space

Tangram Results



Performance-Portability: One Source for All

Challenges

Granularity of Parallelism

Levels of Hierarchy

Memory Characteristics

Resource Sizes Microarchitecture

Solutions

Overdecomposition and Coarsening Recursive Codelet Composition

Automatic Data Placement

Autotuning

Algorithmic Choice

Data Placement Options

CPU GPU

- Global memory
- Caches (data tiling)
- Registers

- Global memory
- Caches (data tiling)
- Registers

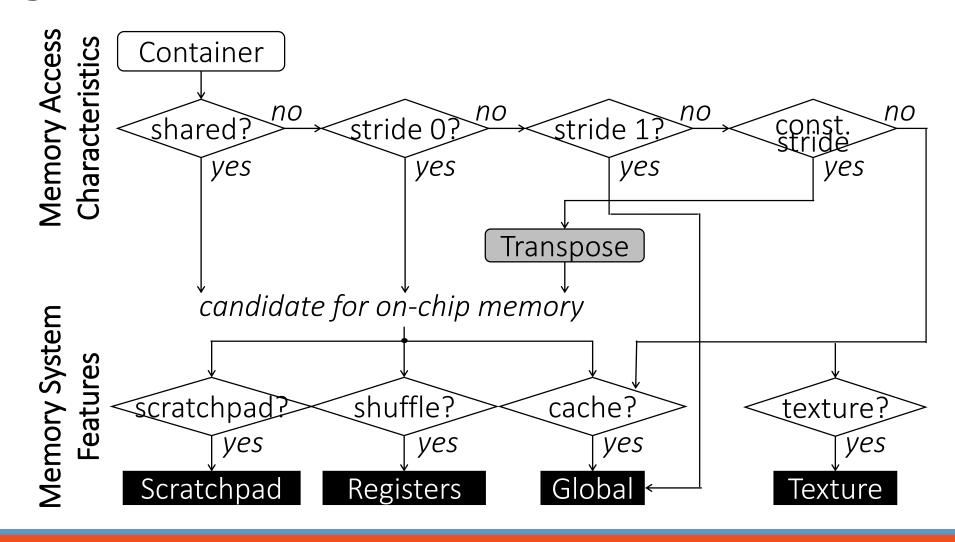
- Scratchpad memory
- Constant memory
- Texture memory

Rule-based vs. Model-based

- Rule-based (e.g., Jang et al.)
 - Heuristics on the memory access pattern

- Model-based (e.g., PORPLE)
 - Create a model the memory subsystem
 - Slower but more accurate

Tangram's Rule-based Data Placement



Performance-Portability: One Source for All

Challenges

Granularity of Parallelism

Levels of Hierarchy

Memory Characteristics Resource Sizes Microarchitecture

Solutions

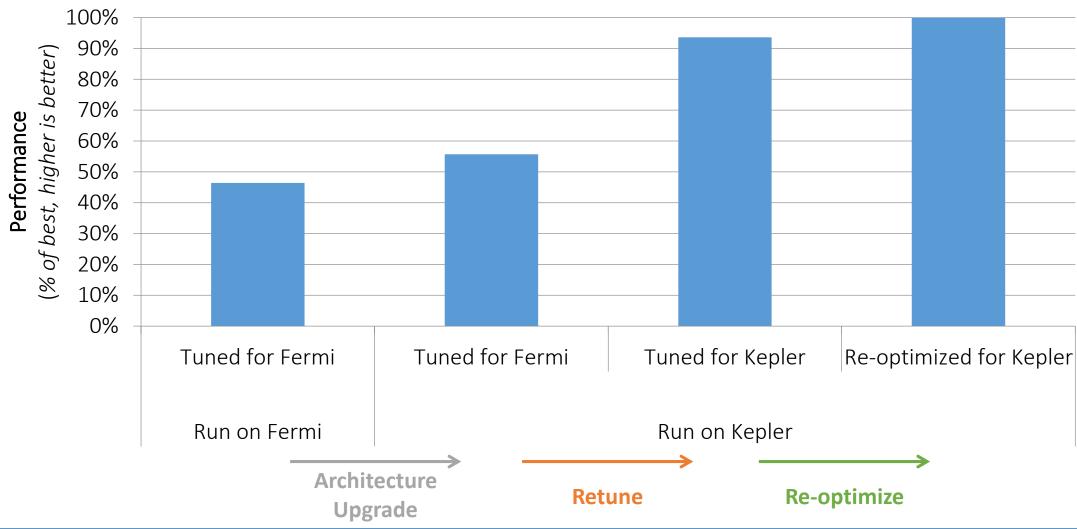
Overdecomposition and Coarsening Recursive Codelet Composition

Automatic Data Placement

Autotuning

Algorithmic Choice

GPU Tuning: Scan Case Study



Performance-Portability: One Source for All

Challenges

Granularity of Parallelism

Levels of Hierarchy

Memory Characteristics Resource Sizes Microarchitecture

Solutions

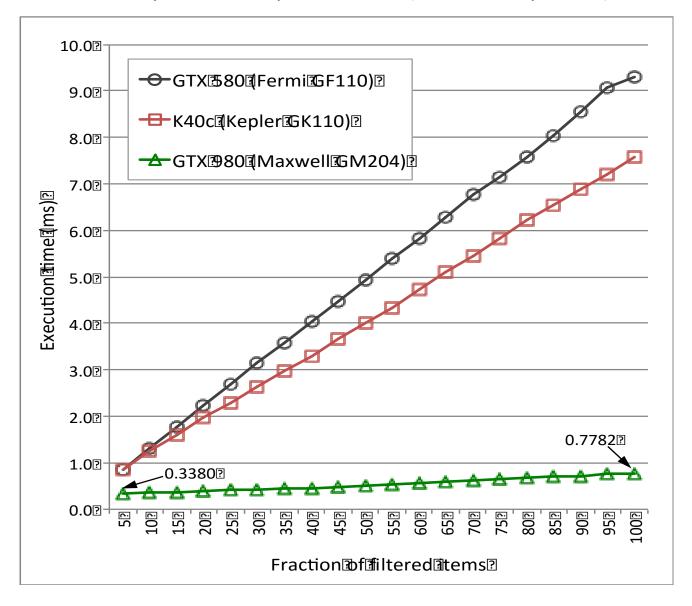
Overdecomposition and Coarsening Recursive Codelet Composition

Automatic Data Placement

Autotuning

Algorithmic Choice

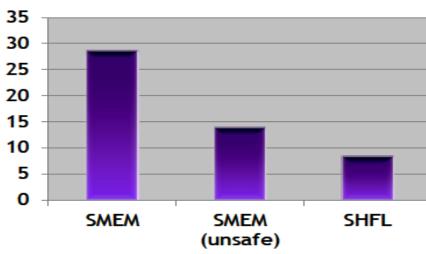
Scratchpad atomics performance (stream compaction)



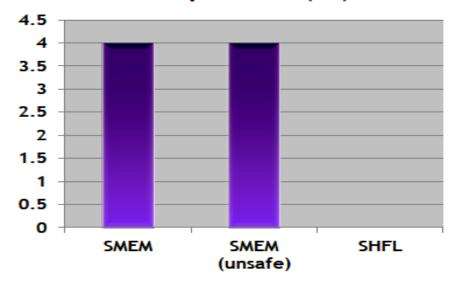
Bitonic Sort

```
int swap(int x, int mask, int dir)
     int y = \__shfl_xor(x, mask);
     return x < y == dir ? y : x;
}
x = swap(x, 0x01, bfe(laneid, 1) \land bfe(laneid, 0)); //
x = swap(x, 0x02, bfe(laneid, 2) \land bfe(laneid, 1)); //
x = swap(x, 0x01, bfe(laneid, 2) \land bfe(laneid, 0));
x = swap(x, 0x04, bfe(laneid, 3) \land bfe(laneid, 2)); // 8
x = swap(x, 0x02, bfe(laneid, 3) \land bfe(laneid, 1));
x = swap(x, 0x01, bfe(laneid, 3) \land bfe(laneid, 0));
x = swap(x, 0x08, bfe(laneid, 4) \land bfe(laneid, 3)); // 16
x = swap(x, 0x04, bfe(laneid, 4) \land bfe(laneid, 2));
x = swap(x, 0x02, bfe(laneid, 4) \land bfe(laneid, 1));
x = swap(x, 0x01, bfe(laneid, 4) \land bfe(laneid, 0));
x = swap(x, 0x10,
                                     bfe(laneid, 4)); // 32
x = swap(x, 0x08,
                                     bfe(laneid, 3));
x = swap(x, 0x04,
                                     bfe(laneid, 2));
                                     bfe(laneid, 1));
x = swap(x, 0x02,
x = swap(x, 0x01,
                                     bfe(laneid, 0));
// int bfe(int i, int k): Extract k-th bit from i
// PTX: bfe dst, src, start, len (see p.81, ptx_isa_3.1)
```

Execution Time int32 (ms)



SMEM per Block (KB)



Slide courtesy of nvidia.com

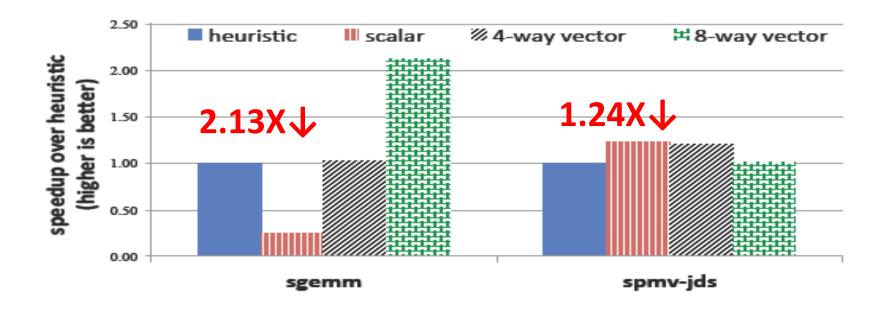
Pronounced as diesel/'dizzəl/

- Statically determining best algorithm could be difficult or infeasible
 - Sometimes it is input dependent

- Even a robust compiler or an expert could select suboptimal sequence of optimization
 - A catastrophic performance loss could happen

Example: Intel OpenCL Vectorization for CPU

Suboptimal heuristic for vectorization in sgemm and spmv-jds

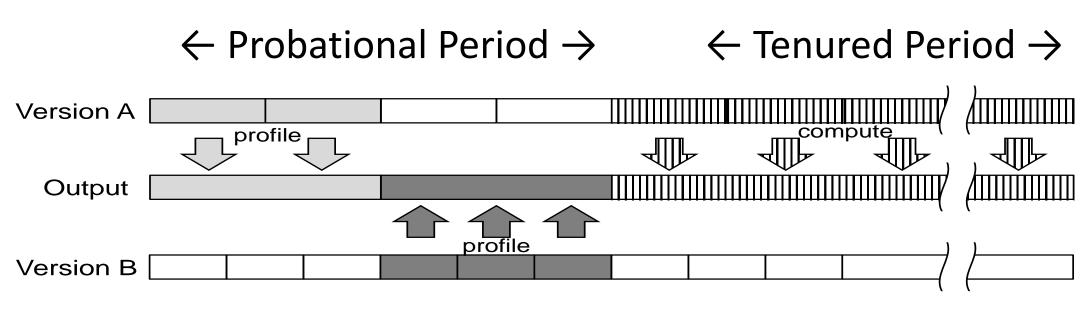


DySel Runtime Selects the Best Version

- Application or compiler provides multiple versions
 - Typically 4-10
- Runtime performs the final selection
 - Apply micro-profiling to sample the performance of each candidate
 - Use a small subset of the actual workload per candidate
 - Contributes to final result
 - Profile candidates concurrently
 - Reduces profiling overhead
- Incurs less than 8% of overhead in the worst observed case

Productive Profiling Mode

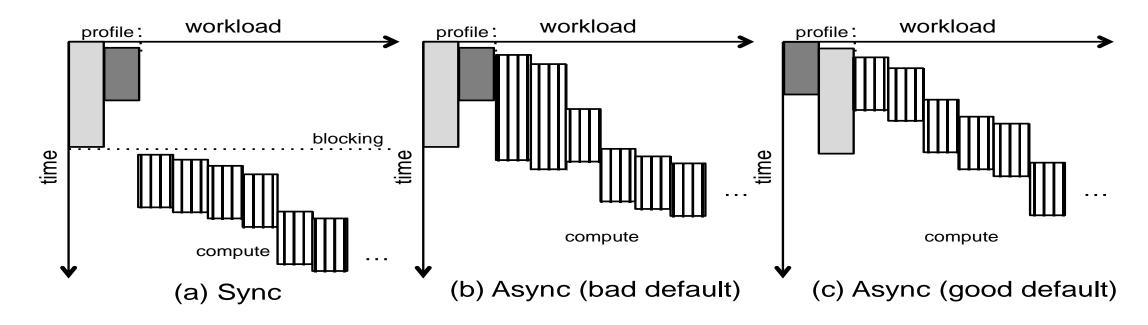
Computation in profiling also contributes to the final output



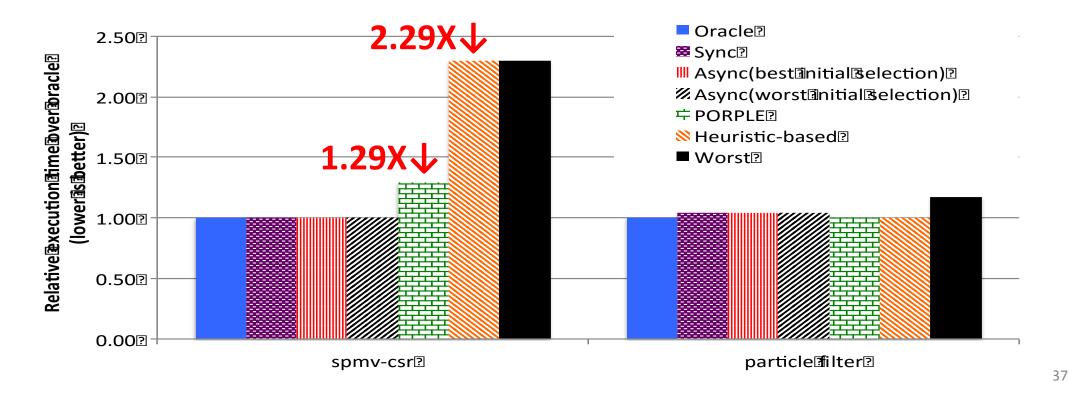
Workload Space →

Synchronous vs Asynchronous Scheduling

- Synchronous: Schedule the remaining workload after the best version is finalized
- <u>Asynchronous:</u> Schedule remaining workload eagerly in a batch using the current best candidate

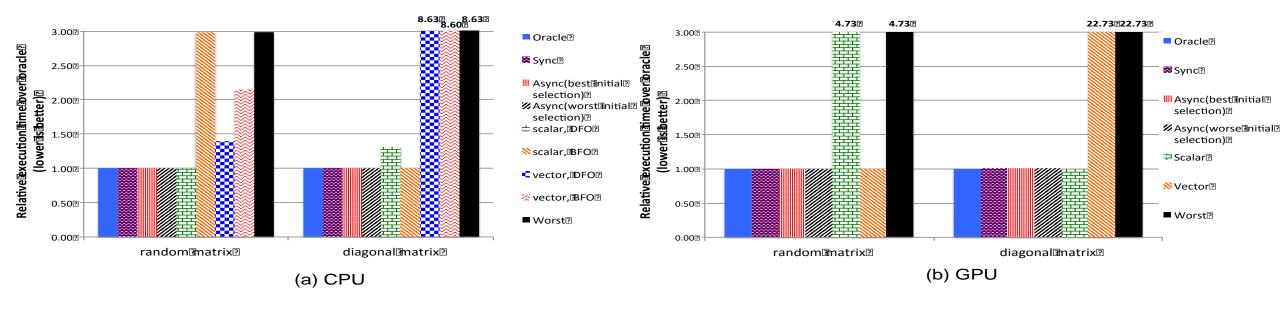


Case Study: Data Placement for GPU



Case Study: Input-dependent Scheduling Optimizations

• Best optimizations could be input-dependent



Conclusion and Outlook

- Heterogeneity has become the norm for all hardware systems
- HPC community are currently seeing about 2-3x application speedup
- System architecture improvements will make heterogeneous computing more generally applicable to large software systems
 - Many vendors are contributing to these improvements
- Performance portability is critical for broad software adoption
 - Unfortunately, vendors have not been interested in solving this problem.
 - There is critical need for programming systems with strong support for portability
 - Performance portability involves several dimensions of technical challenges addressed in MxPA, Tangram, and DySel and other related research systems.

Thank you!

Backup Slides

ICS Motivation

A major paradigm shift

A major paradigm shift

- In the 20th Century, we were able to understand, design, and manufacture what we can measure
 - Physical instruments and computing systems allowed us to see farther, capture more, communicate better, understand natural processes, control artificial processes...

A major paradigm shift

- In the 20th Century, we were able to understand, design, and manufacture what we can measure
 - Physical instruments and computing systems allowed us to see farther, capture more, communicate better, understand natural processes, control artificial processes...
- In the 21st Century, we are able to understand, design, and create what we can compute
 - Computational models are allowing us to see even farther, going back and forth in time, learn better, test hypothesis that cannot be verified any other way, create safe artificial processes

Examples of Paradigm Shift

20th Century

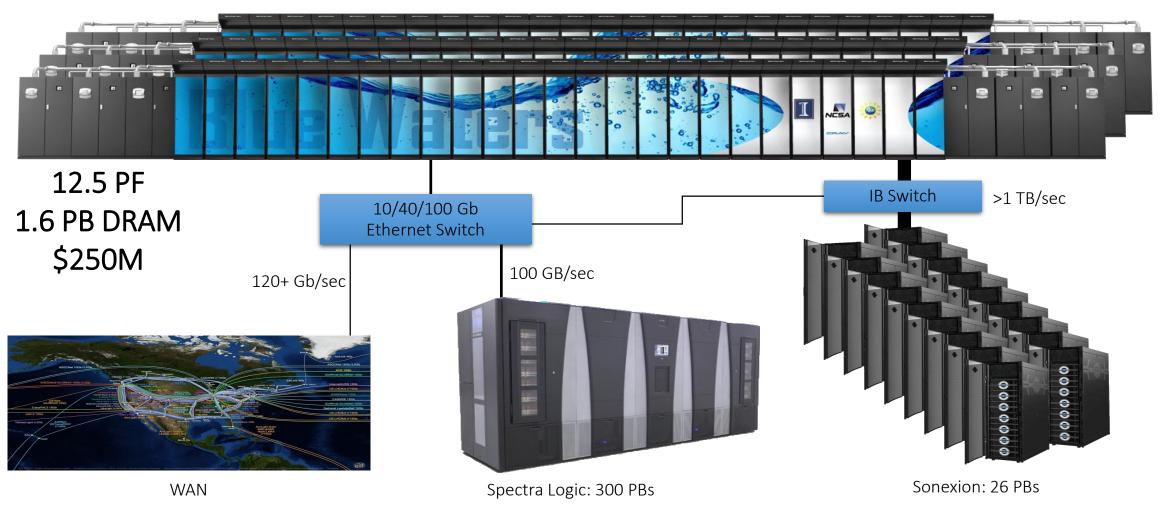
- Small mask patterns
- Electronic microscope and Crystallography with computational image processing
- Anatomic imaging with computational image processing
- Teleconference
- GPS

21st Century

- Optical proximity correction
- Computational microscope with initial conditions from Crystallography
- Metabolic imaging sees disease before visible anatomic change
- Tele-emersion
- Self-driving cars

Blue Waters Computing System

Operational at Illinois since 3/2013



Blue Waters Science Breakthrough Example

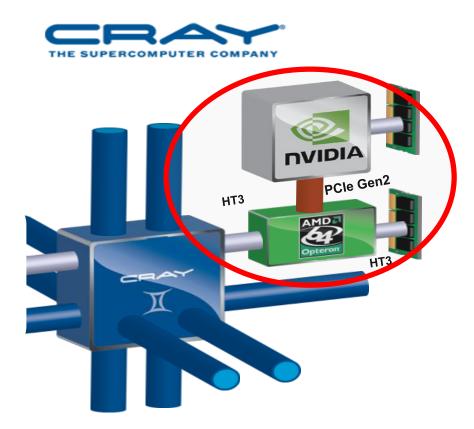
- Determination of the structure of the HIV capsid at atomic-level
- Collaborative effort of experimental groups at the U. of Pittsburgh and Vanderbilt U., and the Schulten's computational team at the U. of Illinois.
- 64-million-atom HIV capsid simulation of the process through which the capsid disassembles, releasing its genetic material
- a critical step in HIV infection and a potential target for antiviral drugs.

Blue Waters and Titan Computing Systems

System Attribute	NCSA Blue Waters	ORNL Titan	
Vendors Processors	Cray/AMD/NVIDIA Interlagos/Kepler	Cray/AMD/NVIDIA Interlagos/Kepler	
Total Peak Performance (PF) Total Peak Performance (CPU/GPU)	12.5 7.1/5.4	27.1 2.6/24.5	
Number of CPU Chips Number of GPU Chips	49,504 4,224	18,688 18,688	
Amount of CPU Memory (TB) Interconnect	1600 3D Torus	584 3D Torus	
Amount of On-line Disk Storage (PB) Sustained Disk Transfer (TB/sec) Amount of Archival Storage Sustained Tape Transfer (GB/sec)	26 >1 300 100	13.6 0.4-0.7 15-30 7	

Heterogeneous Computing in Blue Waters

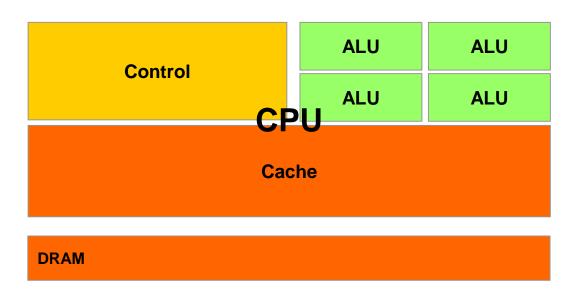
- Dual-socket Node
 - One AMD Interlagos chip
 - 8 core modules, 32 threads
 - 156.5 GFs peak performance
 - Consumes 2,504 GB of data per second
 - 32 GBs memory
 - 51 GB/s bandwidth
 - One NVIDIA Kepler chip
 - 1.3 TFs peak performance
 - Consumes 20,800 GB of data per second
 - 6 GBs GDDR5 memory
 - 250 GB/sec bandwidth



Blue Waters contains 4,224 Cray XK7 compute nodes.

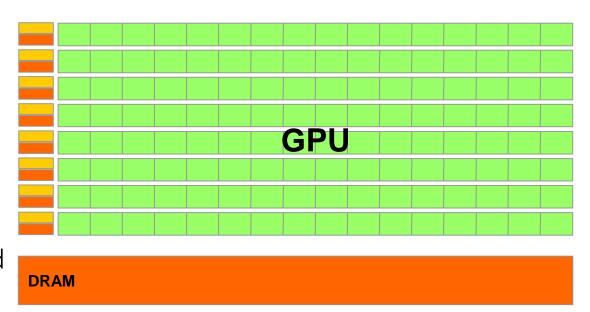
CPUs: Latency Oriented Design

- High clock frequency
- Large caches
 - Convert long latency memory accesses to short latency cache accesses
- Sophisticated control
 - Branch prediction for reduced branch latency
 - Data forwarding for reduced data latency
- Powerful ALU
 - Reduced operation latency



GPUs: Throughput Oriented Design

- Moderate clock frequency
- Small caches
 - To boost memory throughput
- Simple control
 - No branch prediction
 - No data forwarding
- Energy efficient ALUs
 - Many, long latency but heavily pipelined for high throughput
- Require massive number of threads to tolerate latencies



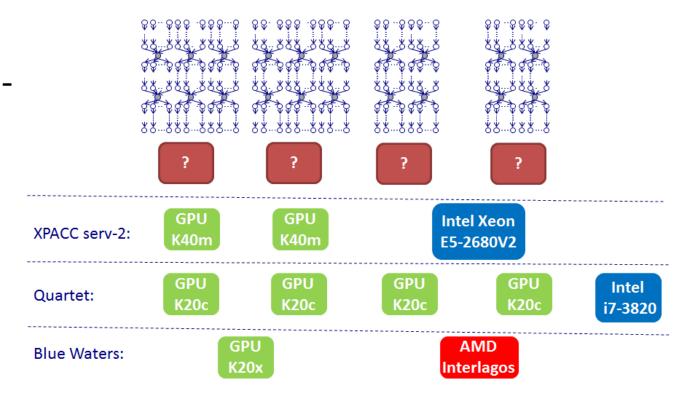
Applications Benefit from Both CPU and GPU

- CPUs for sequential parts where latency matters
 - CPUs can be 10+X faster than GPUs for sequential code
- GPUs for parallel parts where throughput wins
 - GPUs can be 10+X faster than CPUs for parallel code

Motivation Backup

XPACC: THE CENTER FOR EXASCALE SIMULATION OF PLASMA-COUPLED COMBUSTION

- Codesign among diverse areas will be required to reach exascale
 - Every level of the computational stack is a potential bottleneck.
- XPACC code will need to run efficiently and portably on nextgeneration heterogeneous platforms (CPUs, GPUs, Xeon-Phis)



Initial Production Use Results

NAMD

- 100 million atom benchmark with Langevin dynamics and PME once every 4 steps, from launch to finish, all I/O included
- 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only
- 768 nodes, XK7 is 1.8X XE6

Chroma

- Lattice QCD parameters: grid size of 483 x 512 running at the physical values of the quark masses
- 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
- 768 nodes, XK7 is 2.4X XE6

QMCPACK

- Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC
- 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
- 700 nodes, XK7 is 2.7X XE6

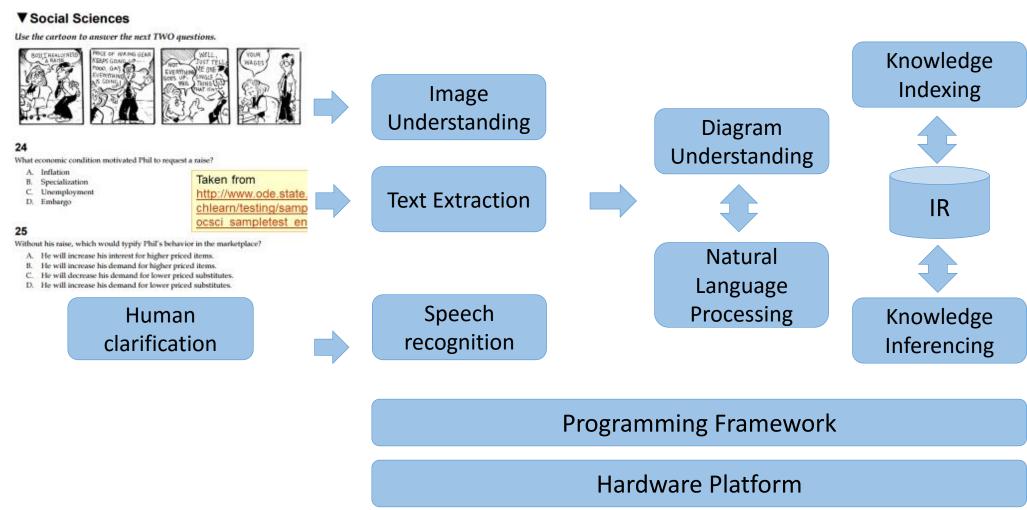
Blue Waters Science Production Applications

- Work with science teams to effectively use GPUs in their production code.
 - ChaNGa cosmological simulation, University of Washington
 - AWP earthquake simulation, Southern California Earthquake Center
- Significant speedup by tuning kernels to specific GPU characteristics
 - Real-world opportunities for performance portability

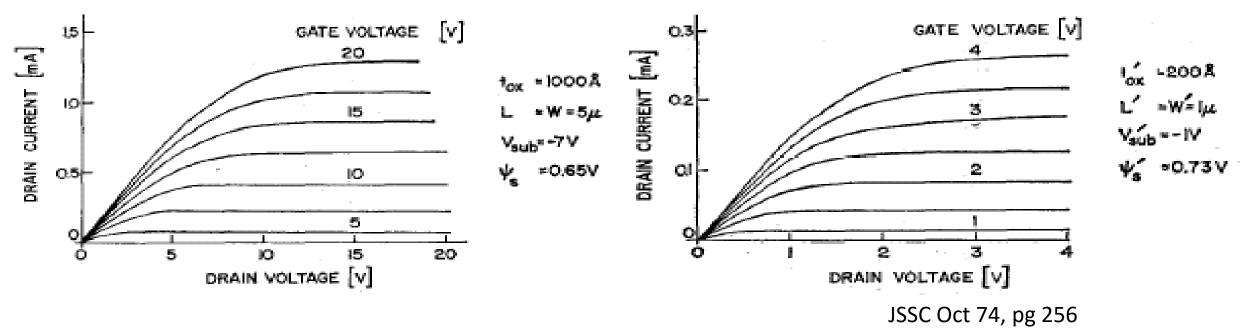
GPU Kernel Optimizations

		Running Time (ms)	Speedup
ChaNGa	Baseline	1.35	2.11
	Optimized	1.16	
AWP	Baseline	61.6	1.33
	Optimized	43.3	

IBM-Illinois Cognitive Computing System Research Center (C3SR)

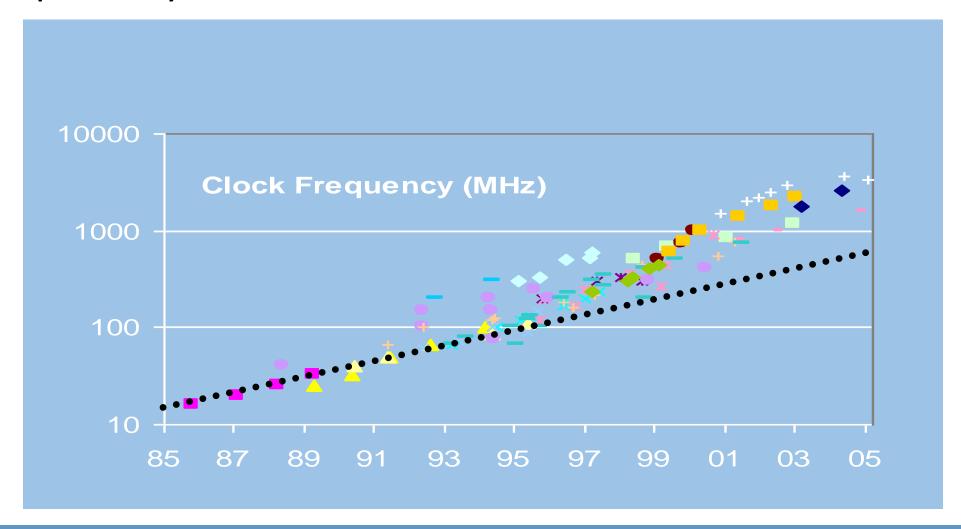


Dennard Scaling of MOS Devices



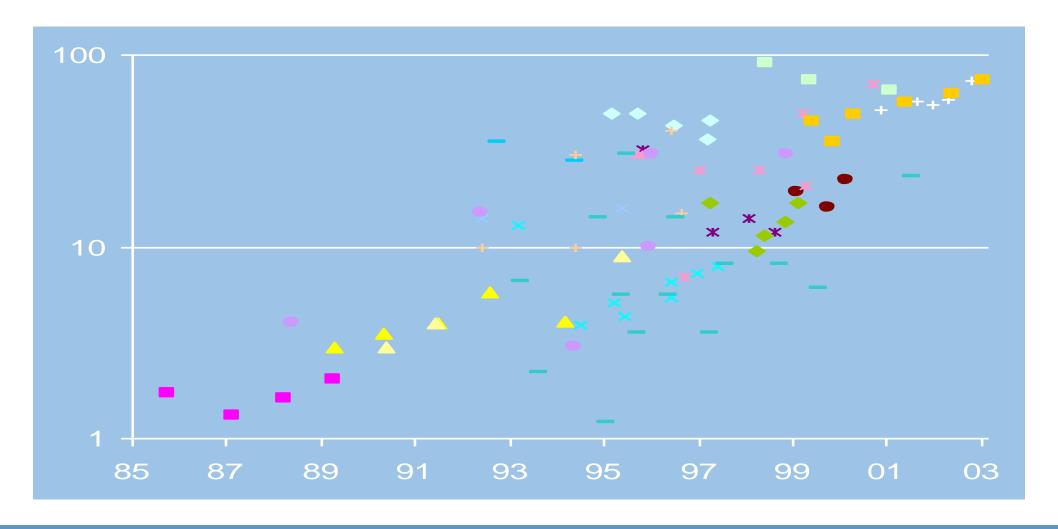
- In this ideal scaling, as L scales to α*L
 - V_{DD} scales to $\alpha * V_{DD}$, C scales to $\alpha * C$, i scales to $\alpha * i$
 - Delay = CV_{DD}/I scales as α , f scale to $1/\alpha$
 - Energy per transition = CV^2 scales as α^3
 - Power is CV^2*f and scales as $1/\alpha^2$, keeping total power constant

Frequency Scaled Too Fast 1993-2003



Total Processor Power Increased

(super-scaling of frequency and chip size)



Post-Dennard Approaches

- Multiple core with more moderate clock frequencies
- Heavy use of vector execution
- Employ both latency-oriented and throughput-oriented cores
- Reduce data transfers over long distances

More Heterogeneity Is Coming

- Traditional DRAM is near the end of memory bandwidth and capacity
 - Stacked DRAM for more memory bandwidth
 - Non-volatile RAM for memory capacity
 - Near memory computing for reduced power used in data movement

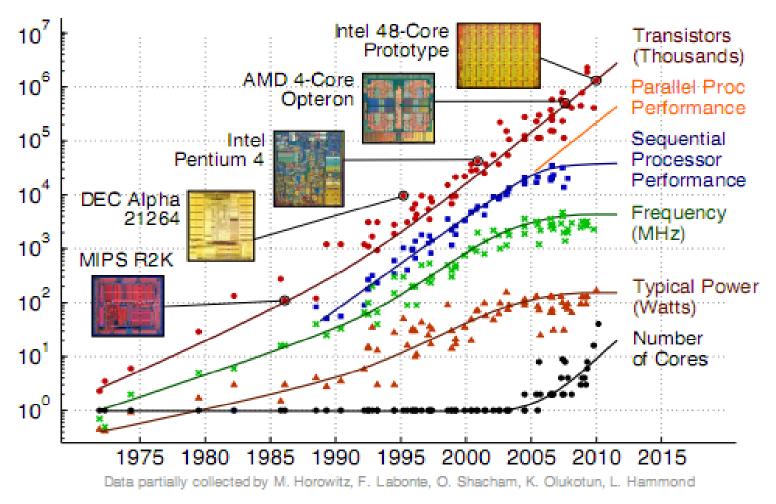
Performance Library

- A major qualifying factor for new computing platforms
 - MKL, BLAS, CUSPARSE, Trust, FFT, OpenCV, CUDNN, etc.
 - Currently redeveloped and hand-tuned for each HW type/generation
- Exa-scale HW expected to have increasing levels of heterogeneity, parallelism, and hierarchy
 - Increasing levels of memory heterogeneity and hierarchy
 - Increase SIMD width and types/number of cores
- Performance library development process must keep up with the HW evolution and diversification
 - Performance portability

It is not just about supercomputing

- Smart phone computing apps
- Software defined networking
- Autonomous vehicle sensor data analysis
- Cloud services for image search and management
- IoT device data analytics

- ...



Prepared by C. Batten - School of Electrical and Computer Engineering - Cornell University - 2005 - retrieved Dec 12 2012 - http://www.csl.cornell.edu/courses/ece5950/handouts/ece5950-overview.pdf

1 core

4 cores

2003

2006

6 cores

2010

2005

2 cores

1 core

2003

4 cores SoC (1 core)

2008

6 cores

2010

SoC (2 cores)

SoC (6 cores)

2012

2012

2014

2005

2 cores

2007

2006

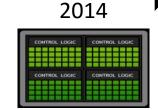
many-core

2010

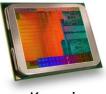
APU (1st gen)

2011

many-core



NVIDIA Maxwell many-core



Stellarton

Portability Backup

Levels of GPU Programming Interfaces

Prototype & in development

X10, Chapel, Nesl, Delite, Par4all, Tangram...

Implementation manages GPU threading and synchronization invisibly to user

Next generation

OpenACC, HCC++, Thrust, Bolt

Simplifies data movement, kernel details and kernel launch Same GPU execution model (but less boilerplate)

Current generation

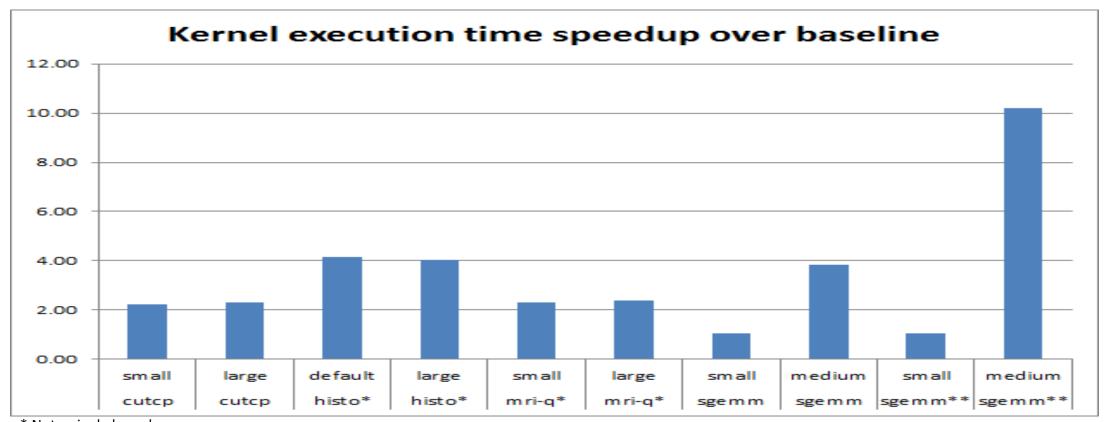
CUDA, OpenCL, DirectCompute

Portability- CPU vs. GPU Code Versions

- Maintaining multiple code versions is extremely expensive
- Most CUDA/OpenCL developers maintain original CPU version
- Many developers report that when they back ported the CUDA/OpenCL algorithms to CPU, they got better performing code
 - Locality, SIMD, multicore
- MxPA is designed to automate this process (John Stratton, Hee-Seok Kim, Izzat El Hajj)

Granularity Tuning (OpenCL)

Results of thread coarsening for Parboil benchmarks(written for NVIDIA SIMT GPUs) on AMD Radeon HD6990 (VLIW-5)



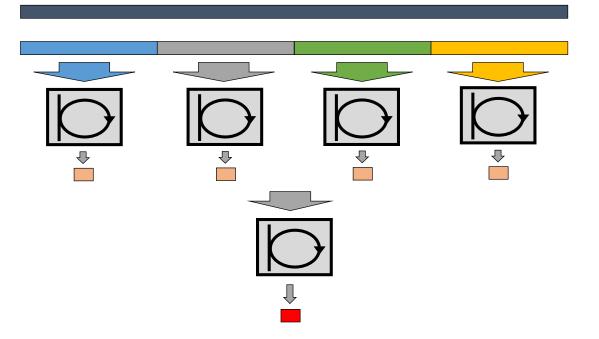
^{*} Not a single kernel

Results compiled using MulticoreWare's SlotMaximizer

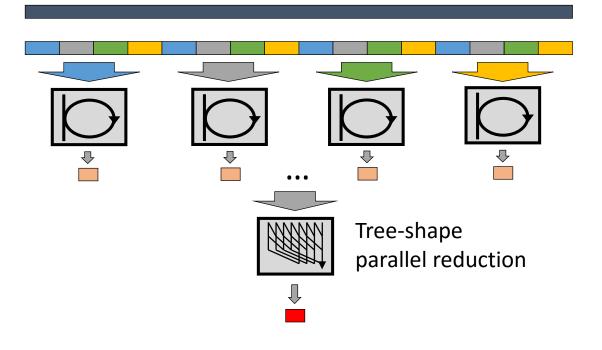
^{**} Results from more than one dimension coarsening

Reduction – CPU vs. GPU (Part 1)

CPUs favor intra-thread locality



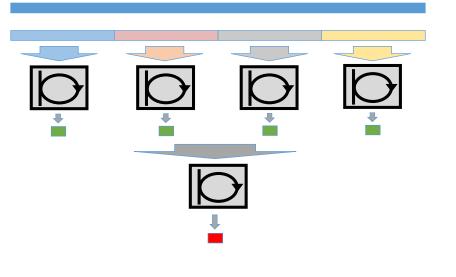
GPUs favor inter-thread locality (within Work Groups)

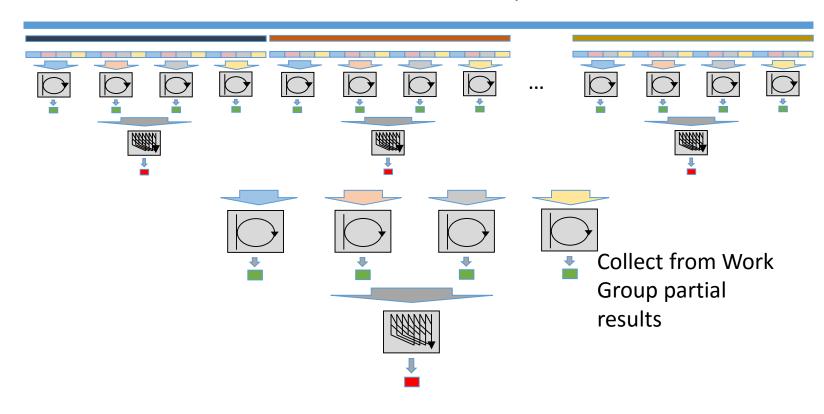


Reduction – CPU vs. GPU (Part 2)

CPU 2-level hierarchy

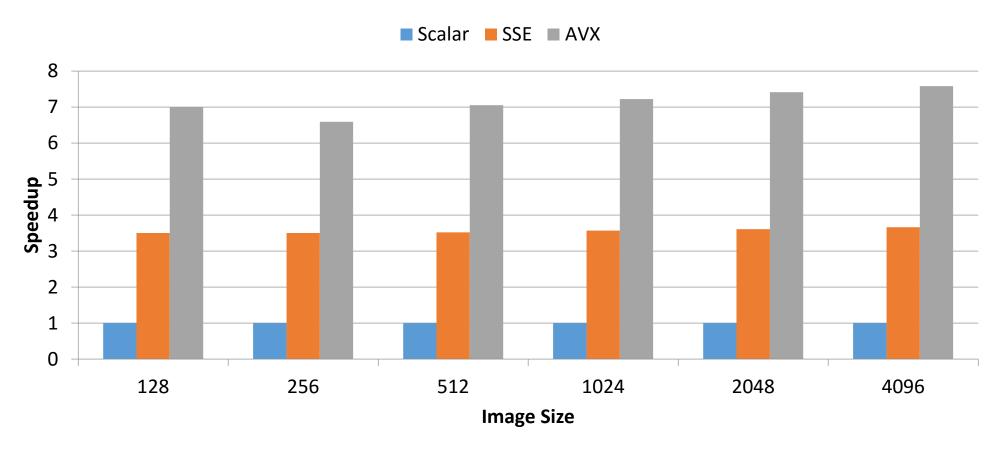
GPU 4-level hierarchy





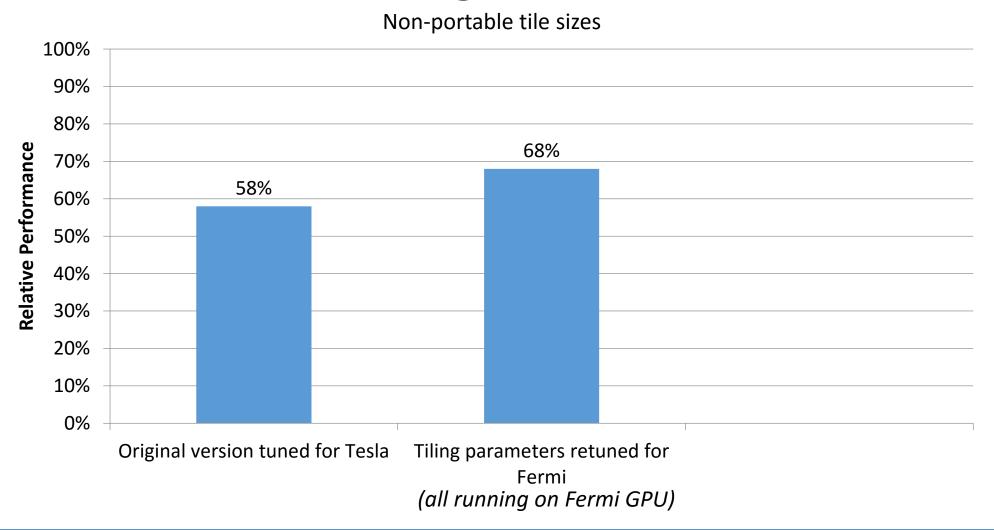
• CPU Parameter Tuning

Mandelbrot performance with vector width

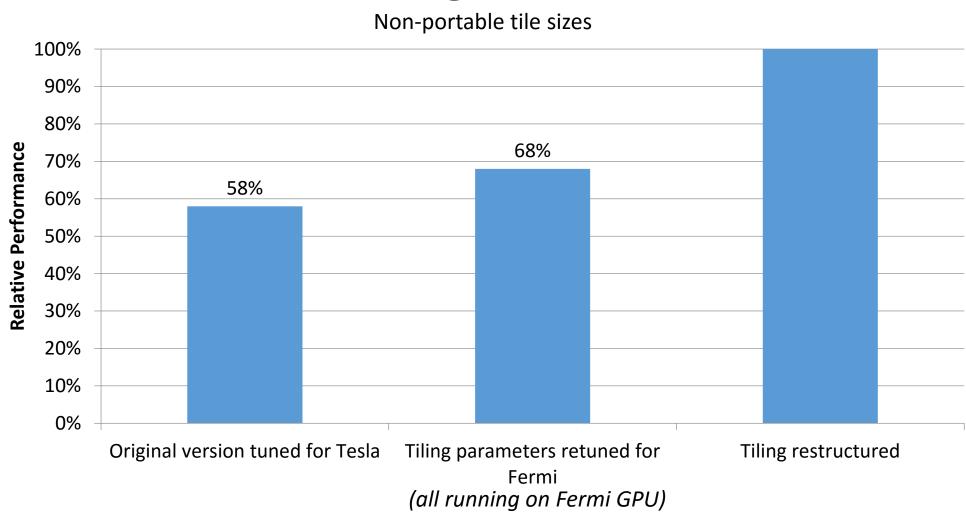


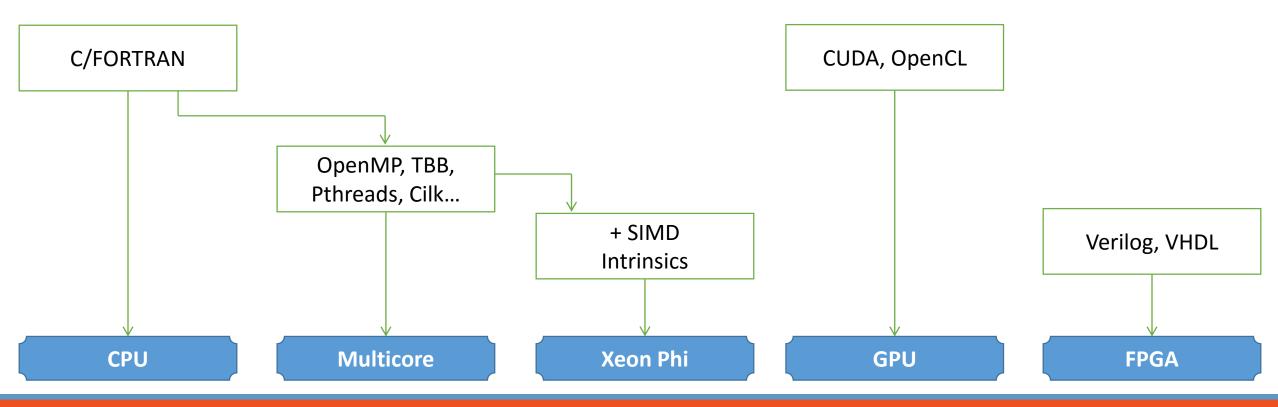
Results courtesy of intel.com

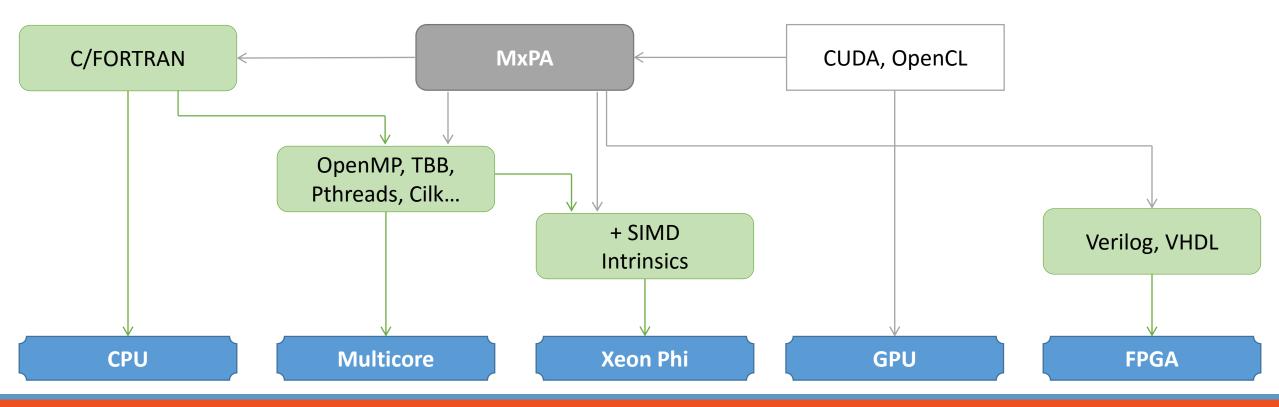
GPU Parameter Tuning



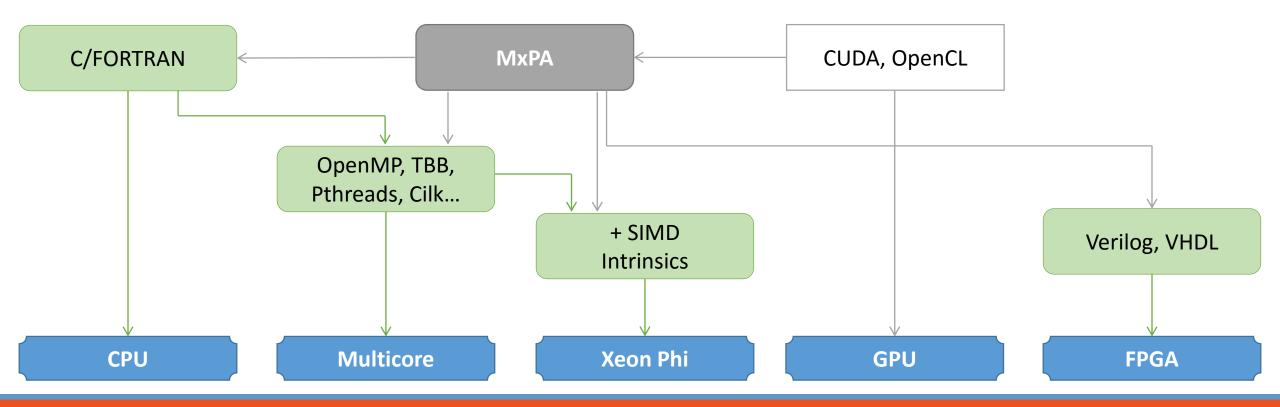
GPU Parameter Tuning

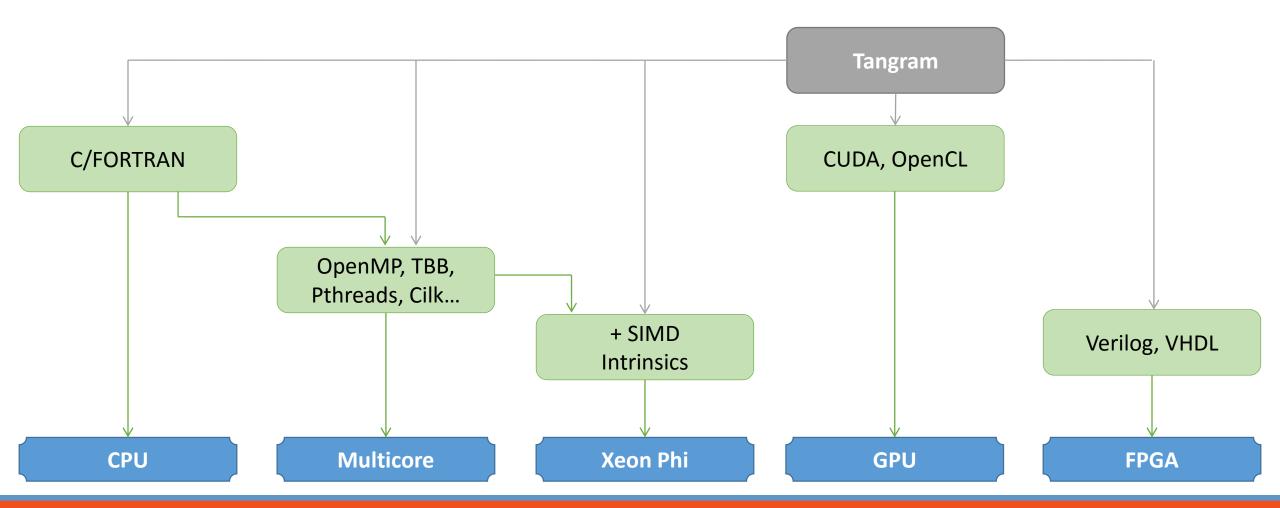






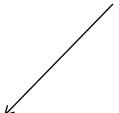
- Locality-centric work-item scheduling
- Speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations

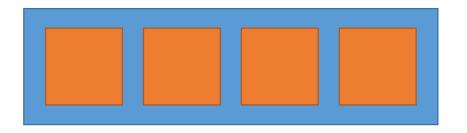


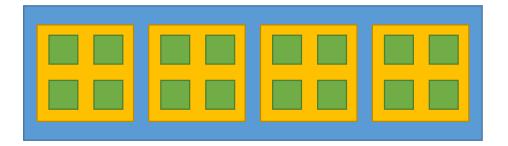


Tangram Backup

Devices have different architectural hierarchies



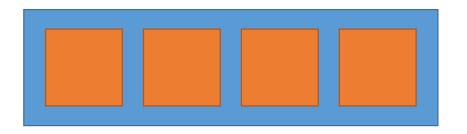


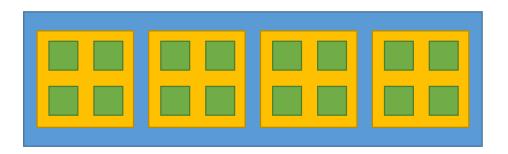


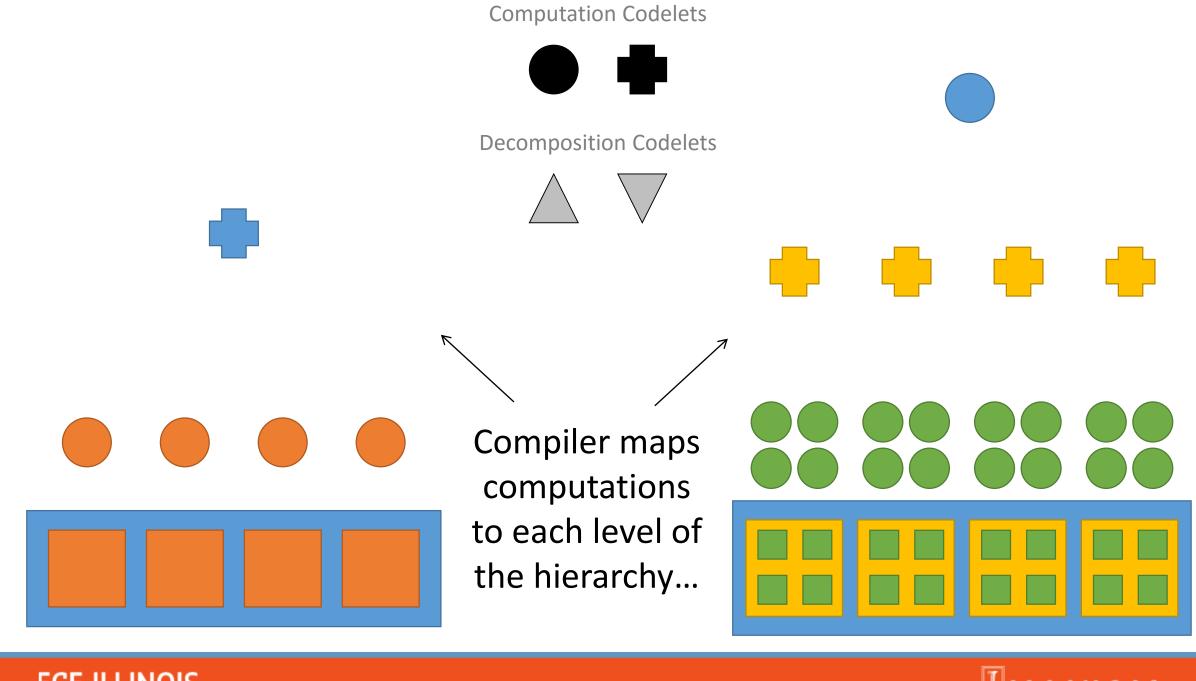
Computation Codelets

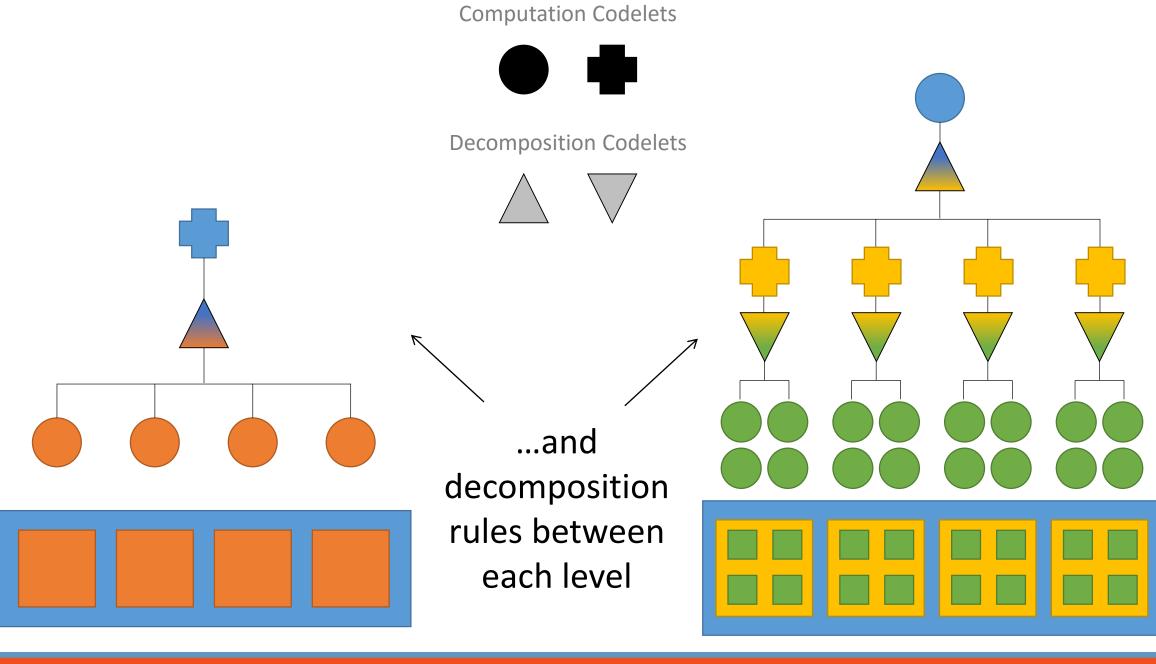
Decomposition Codelets

Programmer writes architecture-neurtral computations and decomposition rules









DySel Backup

Pronounced as diesel/'dizzəl/

- Imply low-cost and high-efficiency
 - Diesel was cheaper than regular gas, when we submitted the paper...:v

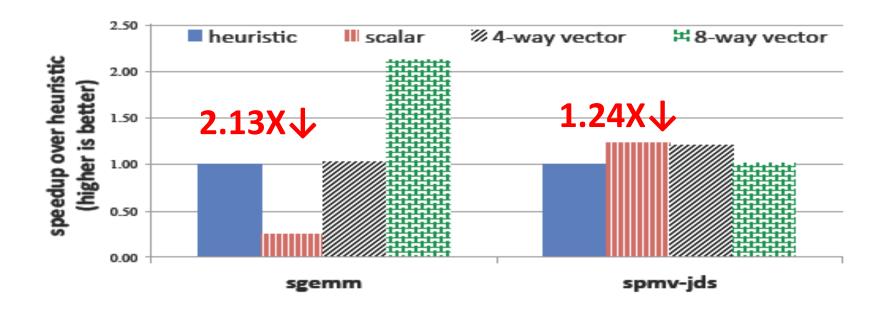
A small but useful tool to save compiler optimization developers

Motivation

- Statically determining the optimal code could be default or even infeasible
 - Sometimes it is input dependent
- Even a robust compiler or an expert could select suboptimal sequence of optimization
 - A catastrophic performance loss could happen

Example: Intel OpenCL Vectorization for CPU

Suboptimal heuristic for vectorization in sgemm and spmv-jds



Relax the Constraints

- Instead of asking a compiler for an optimized version which it thought is the best
- Ask a compiler for multiple versions which are competitive
 - A typical number is around 4-10
 - Let the runtime to do the final selection

Version Selection on Runtime

We propose DySel for dynamic version selection on runtime

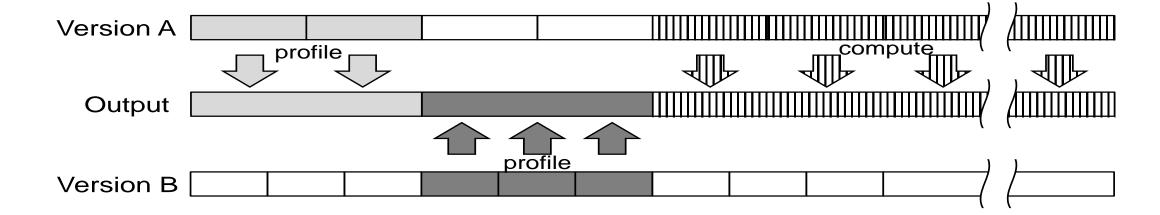
• Apply *micro-profiling* to sample the performance of each candidate

Micro-Profiling

- Profile a kernel with smaller workload
 - A smaller number of work-group/thread block
 - Avoid large impact of performance
- Multiple micro-profiling can be scheduled and even executed concurrently

Productive Profiling Mode

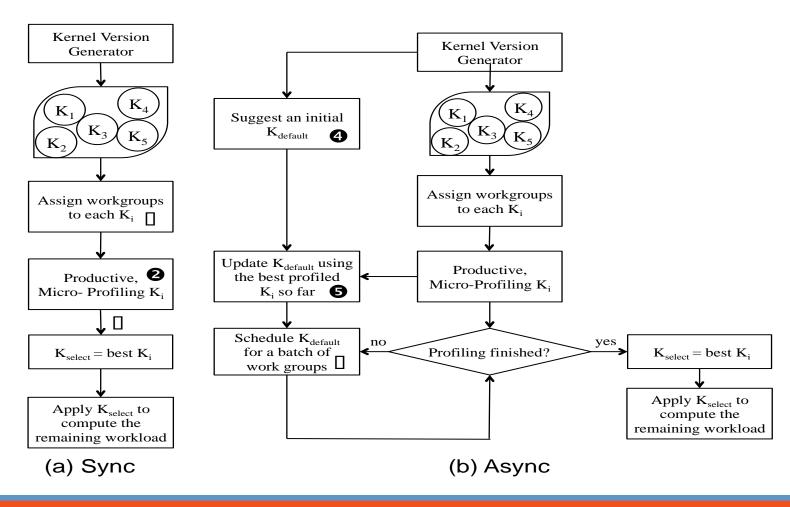
Computation in profiling also contributes to the final output



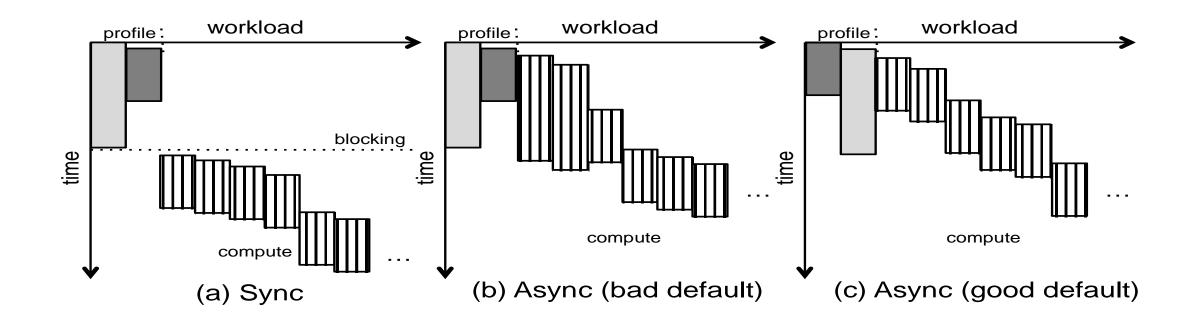
Sync vs Async Scheduling

- Sync
 - Schedule the remaining workload after the best version is finalized
- Async
 - Schedule remaining workload eagerly in a batch using the current best candidate

Sync vs Async Scheduling



Sync vs Async Scheduling



Things I skipped

- The two extra profiling modes
- Applicability and resource requirement of each mode
- What kind of compiler analyses needed for different modes
- Where compilers add profiling code in both CPU and GPU
- More details about DySel runtime using TBB and CUDA

DySel Interface

(a) Kernel Implementation Registration API

```
DySelLaunchKernel(D
DySelLaunchKernel(D
DDDStringDkernel_sig,DDDDDD//DkernelDnameD
DDDDDoolDprofiling=true,DDDD//DprofilingDactivationDflagD
DDDDDenumDmode=fully_asyncDDD//DprofilingDmodeD
DD);D
```

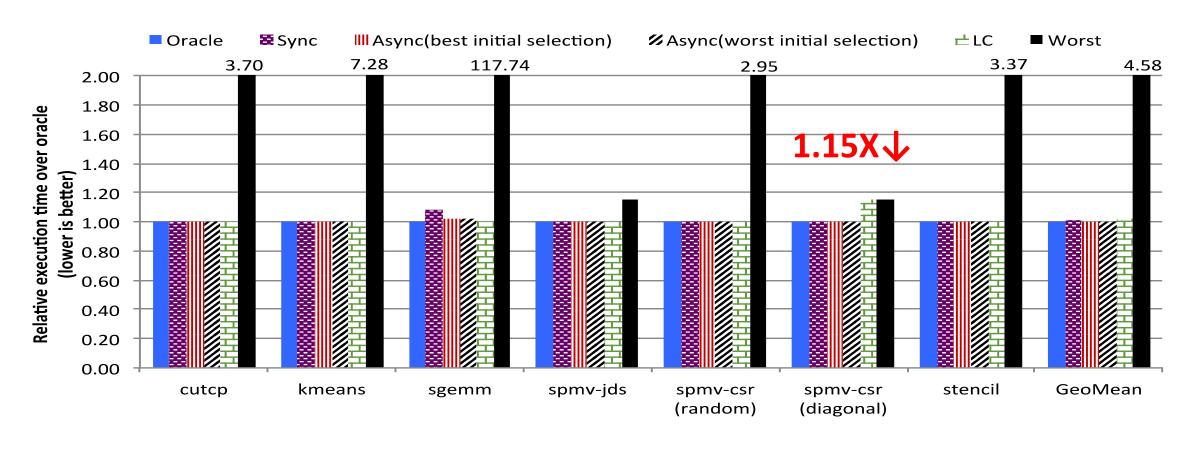
(b) Kernel Launch API

Case Study: Locality-centric Scheduling for CPU OpenCL

- Iterate in-kernel loops first or work-item loops for OpenCL on CPU (CGO'15) using MxPA
 - Through analyzing access patterns

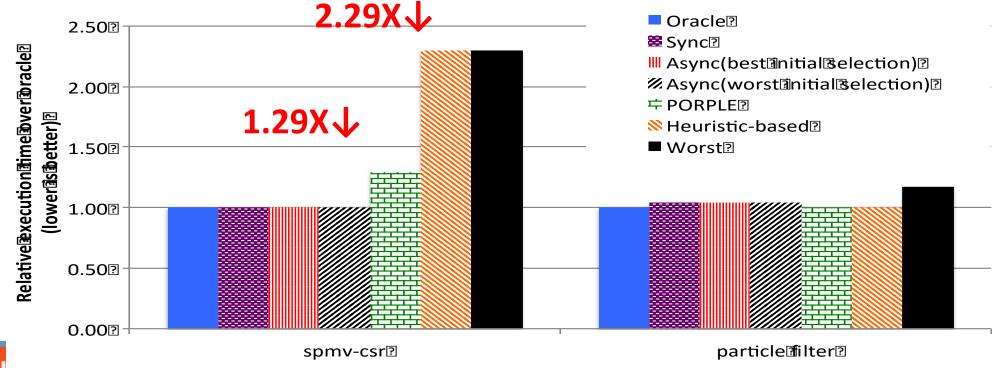
- It is open-source, and robust
 - "3.32x over AMD, 1.71x over Intel OpenCL stacks"

Case Study: Locality-centric Scheduling for CPU OpenCL



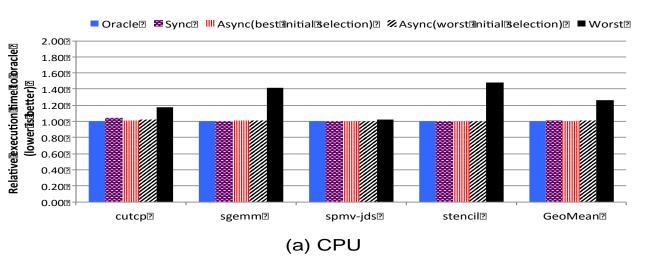
Case Study: Data Placement for GPU

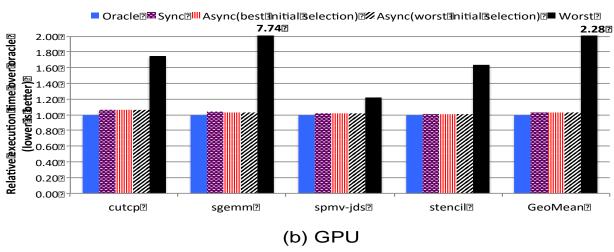
- Data placement optimizations are crucial for performance on GPUs (TPDS 2011 & MICRO 2014)
 - Although they are not open-source, they did show the transformed results
- Suboptimal decisions due to inaccurate model or improper heuristic



Case Study: Experts' Mixed Optimizations

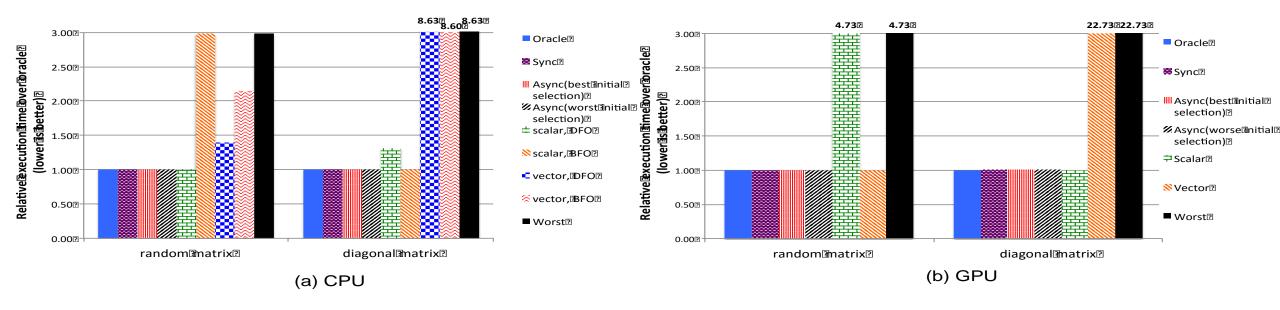
- Parboil provides multiple versions with different optimization strategies
 - Optimized versions usually run better
 - Some Optimizations are improper or redundant
 - E.g. loop unrolling and prefetching in spmv-jds on Kepler





Case Study: Input-dependent Optimizations

• Best optimizations could be input-dependent



Conclusion

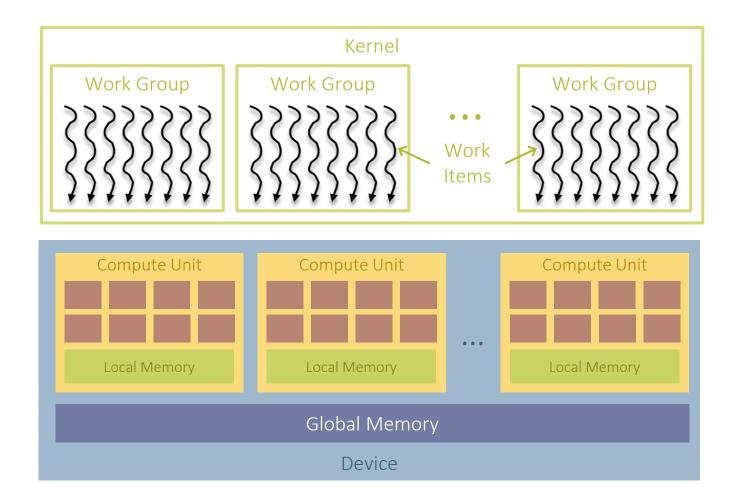
- DySel can deliver high accuracy and low overhead for dynamic version selection in data-parallel programing model
 - Incur less than 8% of overhead in the worst observed case
- Using DySel is like buying an insurance...

MxPA Backup

Contributions

- Exploiting data locality in scheduling work-items for performance
- Real system and measurement demonstrates speedups of 3.32x and 1.71x over AMD and Intel OpenCL implementations
 - 18 benchmarks from Parboil and Rodinia
- Nominated for best paper award at CGO'15
- AE certified

OpenCL Programming Model

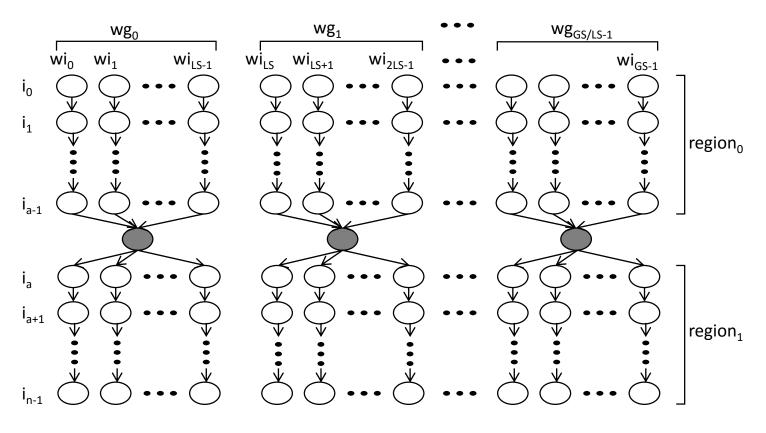


OpenCL Execution Model

```
void kernel(...) {
    i<sub>0</sub>;
    i<sub>1</sub>;
    ...
    i<sub>a-1</sub>;
    barrier();
    i<sub>a</sub>;
    i<sub>a+1</sub>;
    ...
    i<sub>b-1</sub>;
}

kernel code
```

wi = work-item wg = work-group LS = local size GS = global size

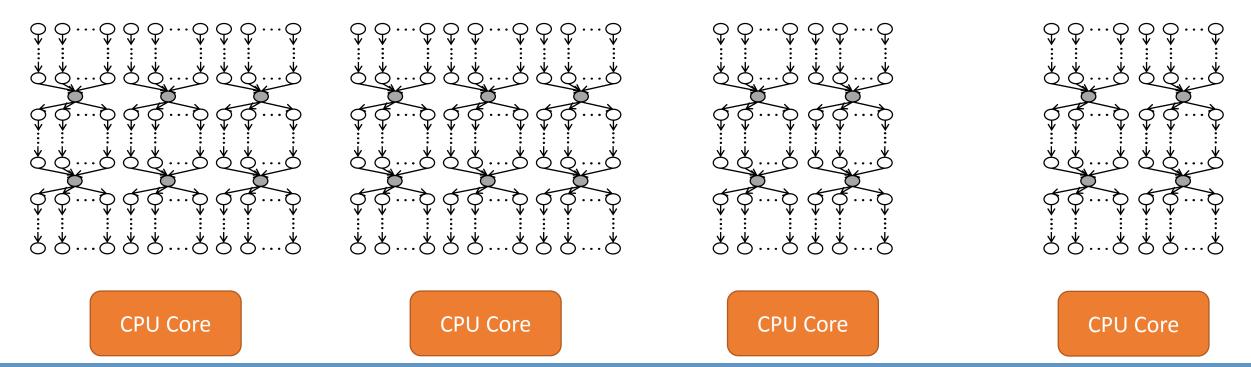


immediate dependency
 Instruction or instruction block
 barrier for work-items in a work-group

How to schedule this execution graph on a multicore CPU?

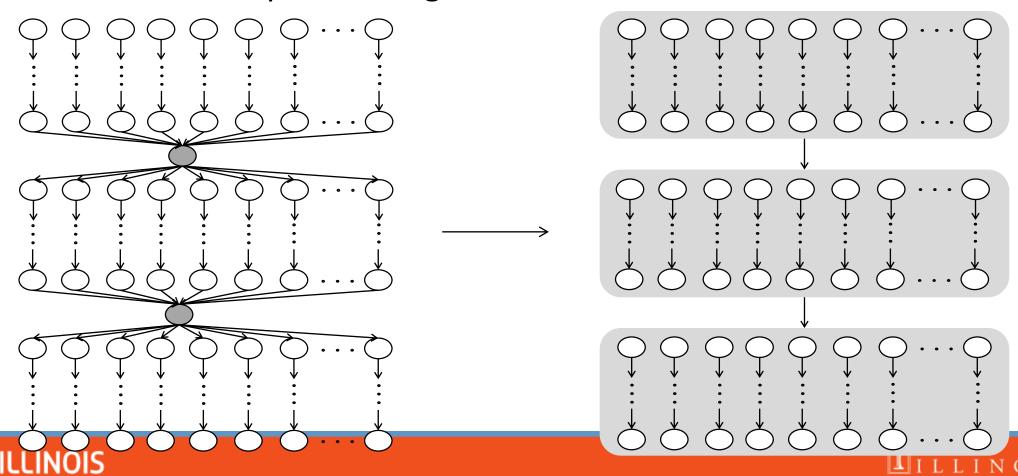
Work-group Scheduling

- Assign work-groups in whole to different cores
 - Considerations: Locality, Load balance



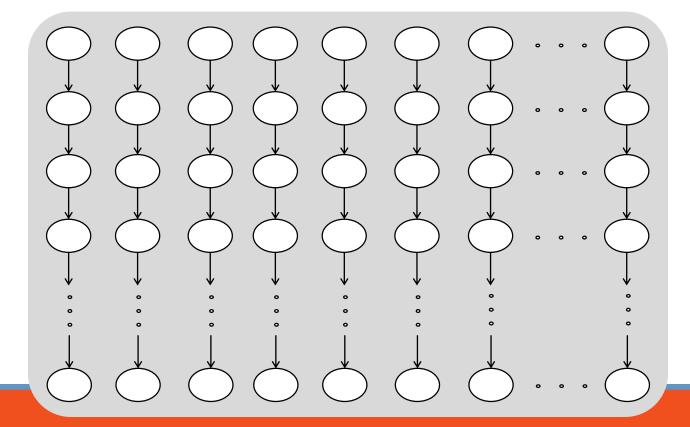
Region Scheduling

Serialize barrier-separated regions



Work-item Scheduling

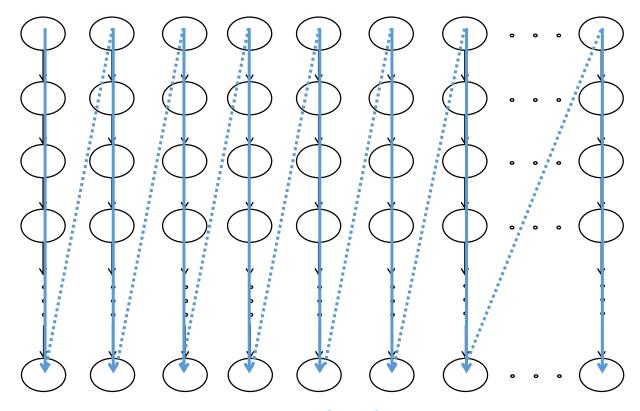
- How to schedule work-items within a region?
 - Different approaches by different compilers



Existing Approaches

- Industry
 - Intel
 - AMD (Twin Peaks)

- Academia
 - Karrenberg & Hack
 - SnuCL
 - pocl

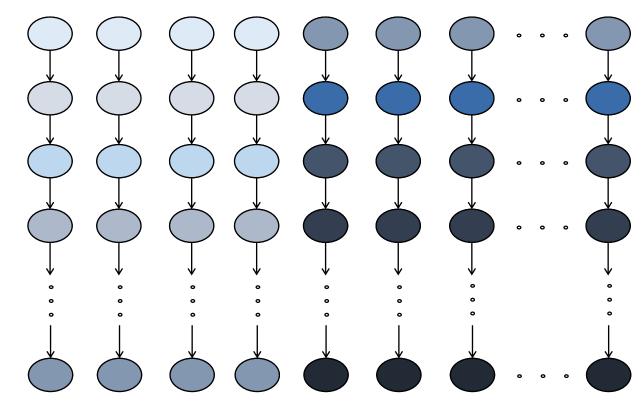


Depth First Order (DFO) Scheduling

Existing Approaches

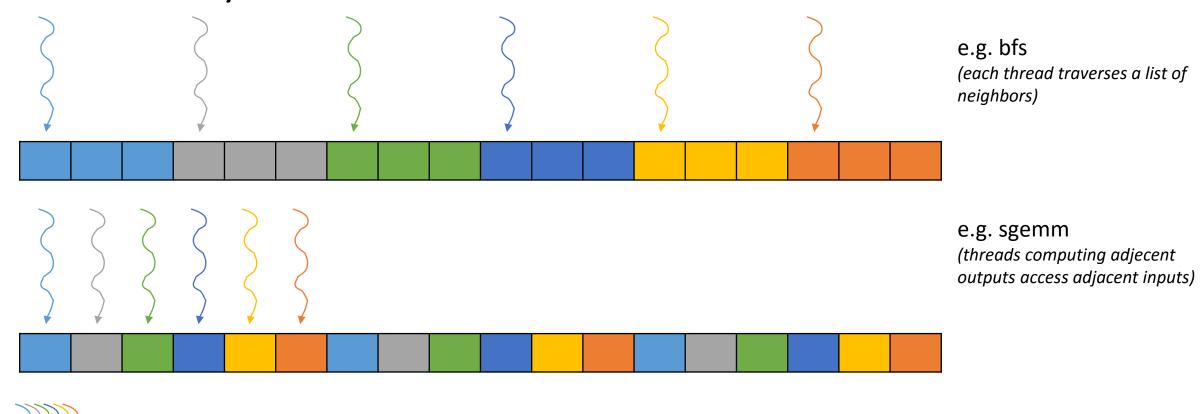
- Industry
 - Intel
 - AMD (Twin Peaks)

- Academia
 - Karrenberg & Hack
 - SnuCL
 - pocl



DFO Scheduling with Vectorization

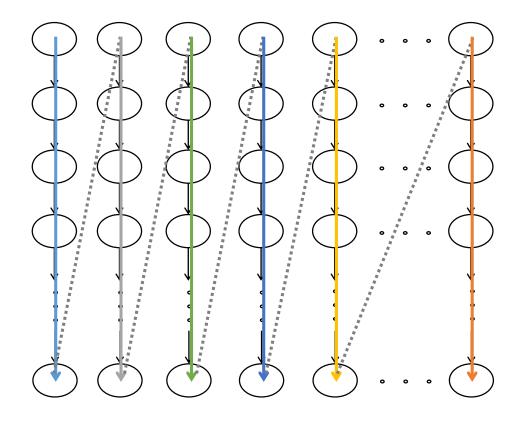
Memory Access Patterns



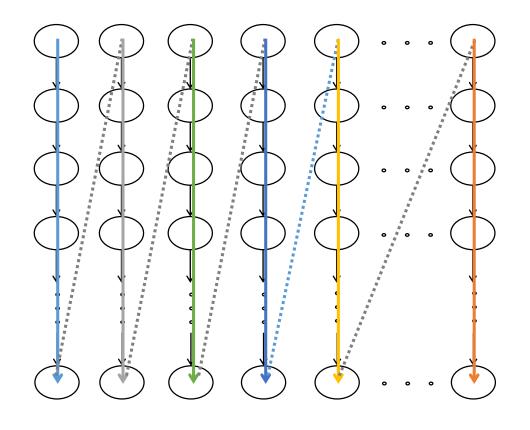
e.g. kmeans (all threads loop over the same mean values)

ILLINOIS

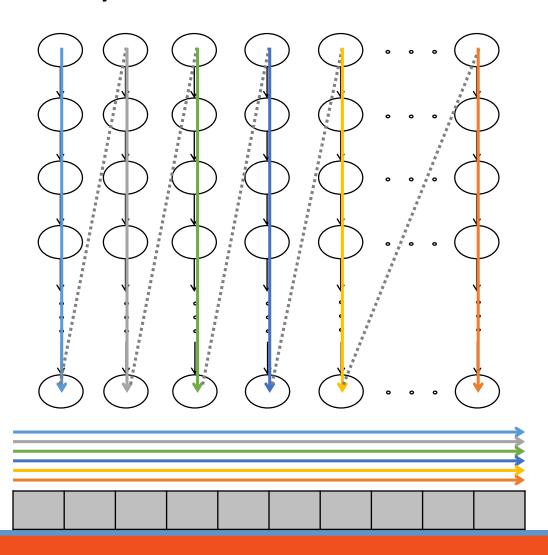
DFO and Locality



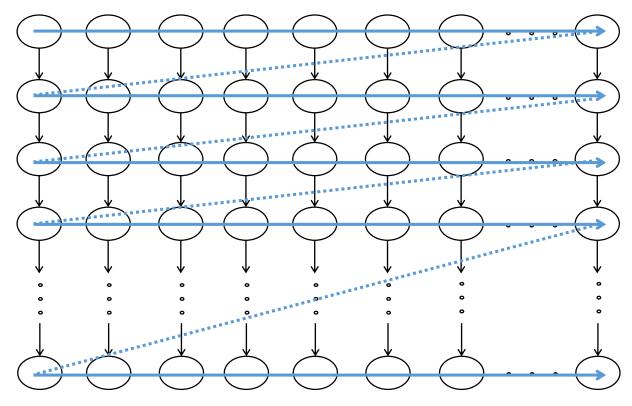
DFO and Locality



DFO and Locality

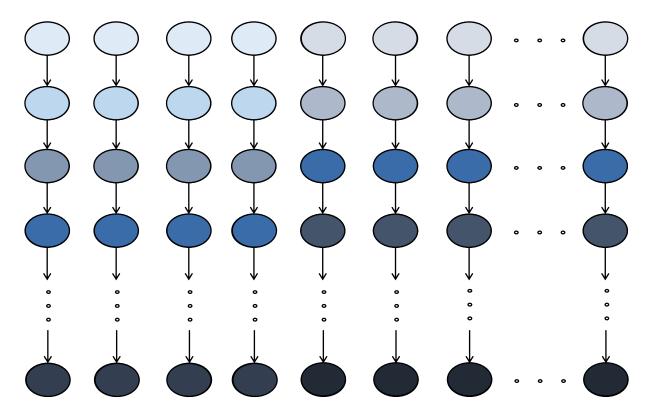


Alternative Schedule: BFO



Breadth First Order (BFO) Scheduling

Alternative Schedule: BFO



BFO with Vectorization

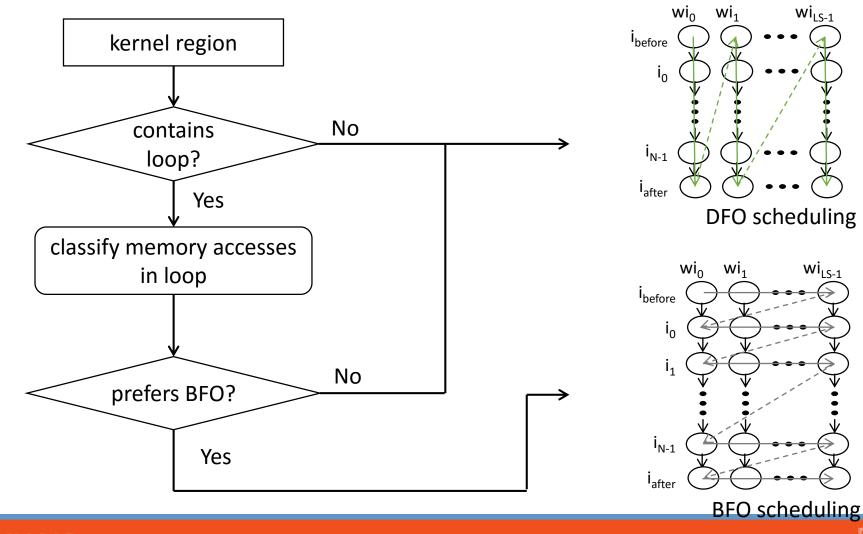
(time progresses as color gets darker)

DFO's vs. BFO's Impact on Locality



BFO has better locality for 13 benchmarks, DFO has better locality for 5 benchmarks. No schedule is always the

Locality Centric (LC) Scheduling



 wi_{LS-1}

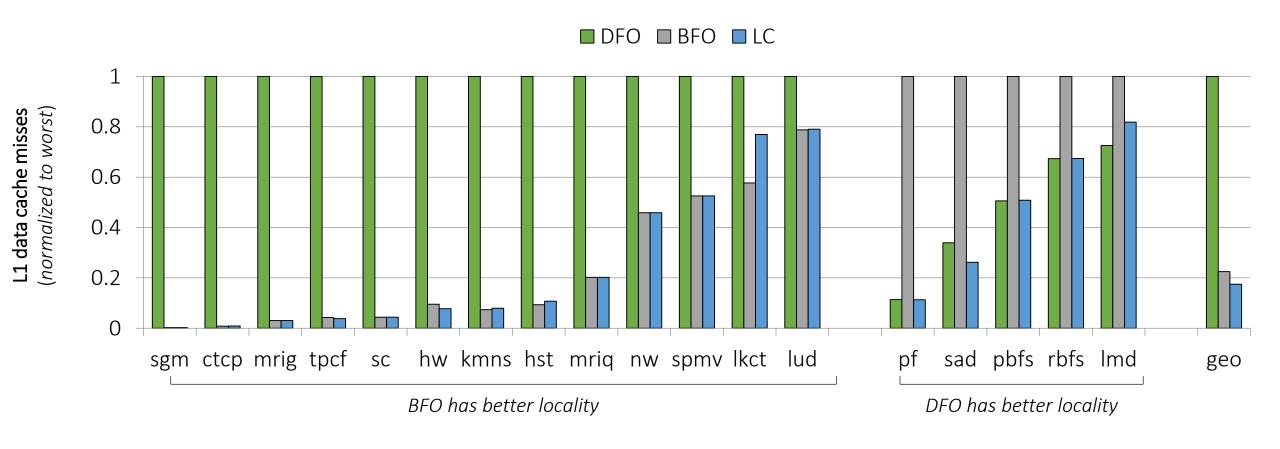
wi_{LS-1}

Locality Centric (LC) Scheduling

		Work-item Stride		
		0	1	Other
Loop Iteration Stride	0	-	DFO	DFO
	1	BFO	1	DFO
	Other	BFO	BFO	-

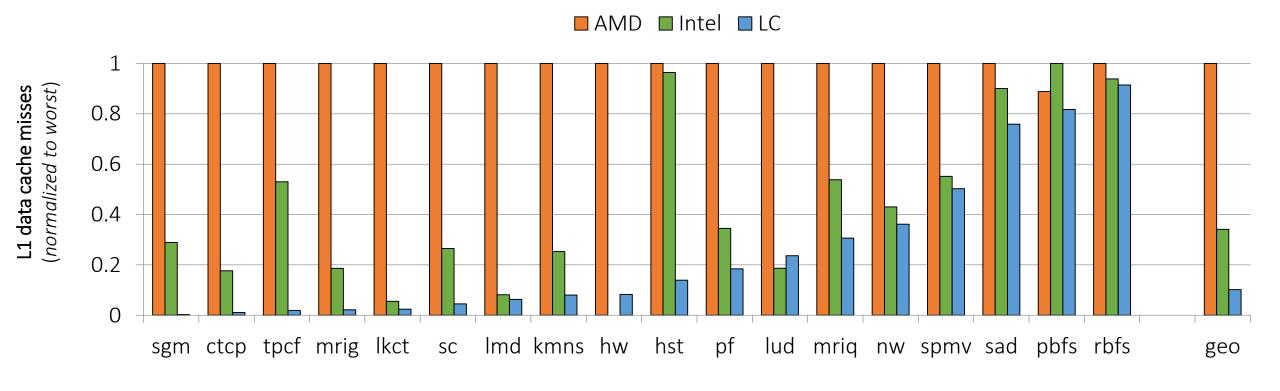
Classify memory accesses per loop body and tally which schedule has greater popularity

LC's Impact on Locality



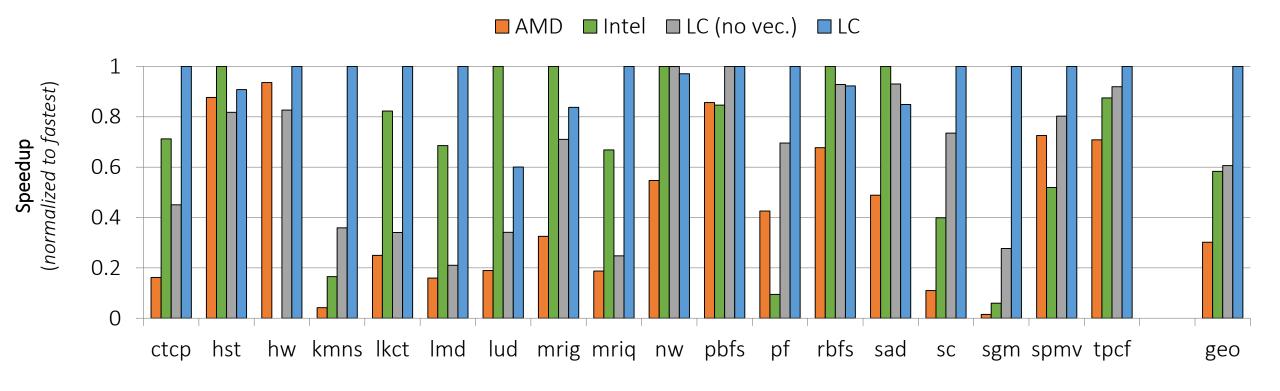
LC captures the best of both schedules

Locality Results



LC has best locality for most benchmarks

Performance Results



LC (with vec.) outperforms AMD (without vec.) and Intel (with vec.) by 3.32x and 1.71x

LC (without vec.) is faster than Intel (with vec.) by 1.04x

Summary

- Proposed an alternative scheduling approach to the state-of-the-art
- Demonstrated that no schedule is always best and proposed a static schedule selection
- Outperformed industry implementations in memory system efficiency and performance